fiD-A142 831  HIGH SPEED LOW-COST WAYS TO GET MESSRGES FROH ﬂ SENDER
’ O f RECEIVER WHEN.. (U) YLYK LTD ANN RRBOR MI
B BLAKLEY 28 MAY 84 VLVK/RFOSR/SBIRI/SZ 84/581

UNCLASSIFIED RAFOSR-TR-84-8528 F45628-83-C-0160 F/G 17/2. 1




P Bk hy S ACUNLS

RE

Y
D o —11 ) y

- ‘
PSSP PAAPLAACMEN | RN R A DRt | W Bt { ~ rpranind i Yoy el
Ml sas ™ O N : -

R I I
S EEE <j

i EEFEPTIN

=E

ml l.

125

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

I
i
i

.
:
]
6
;
n.
:
;
;
d
u
L
¥
:
m
m
»
m
|
m
b
m
i
j
m
m

Y R Y Wl ) S N ) T ,

s L PR : ] %




Vol o

R, Gy, & gLt

Gy Py B R RS
aleialalltal

o

A g

% A %%

R I Mo hech. . s

AD-A142 831

AFOSR-TR- 84-0528 N

FINAL REPORT ON
"HICUH-SPEED LOW-C:ST WAYS TO GET MESSAGES FROM A SENDER TO A RECELVER
WHEN SOME CHANNELS LINKING THEM BECOME INOPERATIVE.™

ense}d
afor public re’;
Approve “nlimite .

aistriputi?

DTIC FILE COPY



T AL BN .

CHORALIN WA 5B 3N ST JPIR SRR, S M VR TS

WAL T L kSt U R . BN . K N LR ARITIE T . WY KR JILARTURSAEN, LA
TIPS DL T TR DAGE
O e e e e ® e = ——
RIOITRTEIPS RS i
: v )
- — 4
Ve - N =T . 1 [SEN
L 1 '
I X w Co . o T . ‘ hR® i .
_\" . N ) LT A S P ‘ L1 L, ; LR DL Sle ATl oLt T L
o \L\m ; “R’%%IRI/S\-Suf‘Jl -
ﬁ . ‘ e s - - ’ - rad ~
:',. f ! F 034\.' iR' O 4 - 'J : ? '»,
?‘ - . —— e
::..'-.‘ $ - . o SR DT . ; ST L f o SRt Le MAUNLT LR N L Lk LAt Tt L
W vLye ned, i feim s I tir Force “Ifiece of Sciontific Rewcar:
. i
[ \ i
4
' O S . - " Y sT L RELS clal SIde urid SEE Coder
..-{t o v :J- 2C a :AuL- o d. GG
2449 Stone {irectorate for Mathematica! and
1 , -
;ann Arbor, MI 43105 Informational Sciences
: bolling AF3, DC 203332
v NN PLLNG BEONG SRaled © PHGCURENMENT iN3TRUIMENT (D0 et R oAT L fautts §
i 7 N D e ™ Ay [S FEPLIT RS aP L)
., - N P ~ ) hIEA
N A0SR NM F49620-83-C-0160
- - ) T
ne CALTe S ng IR Code 10 SOLATE OF FUNDING NOS
. - v — ————y
e $ PEOGHAM PHOJCT | Taux RTINS
- - . ) . . e 8 .
AN Bolling AFB, DC 20332 ELEMENT NO NG G :

61102F

Yoewtile Ulaisdcut LT

- 'HIGH-SPEED L

W=C03T WAYS

70 GE

3005

e

Bob

"

H Blak%ey,
: e T, T el

.

LoecRED

g v 2 AN
Sinal ' (ols Mar 31
A . S
§
" -
5y
S0 ‘ : s g
o . sl = ERNS online. - rg ey,

Pl

M - A

alenlce o

hoooe oo

B) B . e, Engiveering, AO3R Q‘IR, rl»“"‘orl(_ .v*‘:fi
09 (™ ouic Component Raliighility, Disival Comanina”
17 2 carir 10N On TEVerse side.y
. ' N (i} ¢ . LT . ) -
\"!»-vn o tvee e YTV T b [ - RPN Y4 A~ VLgnetfagt R
nis AFCSK 33IY Phase 1 Project produccd explicitly the hyvne-fast peal/onvre
alyorithme of the Hlaon techaiane.  These algarithms, once they obtais nardware
icpimmentation, will be deel as foeliows.  They will make §t possille fur a sender o
~11 desired dizital inforaation to a receiver by coding it for tra nsm{ssion 0T
<pnrallel channels in cuch a way that decoding will recover everything s:at oven ohe
i predetersined mpmber of clannels faile This project developed » oot of denass v
‘or hardware imslementasion of weeh o/¢/r pracesses by means ol onicting T S ST I
. Teizes b, B oand 'Y it
. P
;‘L . v
S
g
B T
-'.
L]
A e dml e e e e e e e - - —— .
k ' : e ' - o :
| ! Pre Ml
x .
e e - i m e s~ i ot + amm w —mt m  oe arammsms aen - -
@’ H ~ - V.
.
9 | o T .
" TS S P R O T A . PETRERI NS :
a - e .4 - EANE v SRy CFAAR A W7 - R ks B R SEr LR N - Sy . A, o SR

(R SAS \.-\-
-

;._\,\,\

A Y BAPexcos B wan w o .

ra e




Lok s

{4

.

A
3 ! &
N5

"l‘. -
e

.l

TN

t'rostitate

- P
oo oot e e G
R
. ) . .
I M SR L NOobe mRDoREJTOUS vaa
- - . .
-- - -~ - - em e ~ -~ - Ao <3 - » BRI - 3 iy e en e TS — ’ -~ PR e
O O AT 34 Jlonea, Jamnie o, Sroiiam, bed Nolse, \J:Nv.d-lu:, ;“.wrmx;‘un TLUdTY, LrrTor
Ll N - Y - ~ - v v > s 7
Cenrral Cowos, Thresheld Schomes, Heperfast Bloom Processes, i
i

- e s — b

a———

e - -~

v

o eanewr s

P

ast
Tinite Filelds, Galois Fields, Vao

t
ip, Dls~~1butc

Comnunications, Spread Spectrunm,

d Processing,

Nerted Comnuaicatiorns

Trocessts, ALzor!lhns, S v ‘urmowzn Martricoes, Reed=Saloom
Ledvs, Vecotor Spoces, Linear Transformaticns, Gate Arrayv, Programnzlble Lotic Arrav,
Parallel Processing, Microprocessasrs, Pack Switching, Clip Des icn, Fiber Optic

G

1

Systums, VISI Design, Reliability, nility, Endura

“rstems Technology, Distritiated Comiaun

Lu“dwilth Communications, Channel Fallure, Channel Fadin
:andwideh Zeopansion, Movel Architecture, Tault Tolerance,

Srficient Spectrum Utilization, Cost Effectiveness, Tele

Netanris, wow Computational Conplexity, Encode, Deccde,

4 ’
irtllelism, Parallel Computations, Systolic Processors,

]
bos
o]
-
T
—

Include Socurity Classification

INAL KEPORT ON "High-speed low-cost ways
me channels linking them become inoperatc

¢ et - re S ¢ v

ications, Radio Freguenzy
ire

bility, Respons IV"QST,
Communizations,
7, Senllng hode,

L)
Fail S:ife

Snace
Hipgh
h:VL.Yin?

Communications,

nOdQ,

communications Wetworks, Local Area
Fedundancy, Minimun Relundar-v,

Minipum Message Expanczion.

to get nessages
ive."

'n.' ) ‘..-.. By ~'-‘.

e e cma  wmm v w0 s



o ' R S T PORTE O e T e At ae T
oy - ,
[ -
N
\vﬂ 0. Introduction ~'r _ L lLiul.oiwainicon
v-— wiiio by~ de = e
0Ny
:4\- This is the final report on USAF contract number F49620-83-C-0160,
ot effective date 83 Sep 30, project number FQ 8671-8301504 3005/Al, |
:_: duration 83 Sep 30 through 84 Mar 31. !
fﬁi The work described in the YLYK Ltd. proposal (see Appendix A) which |
) led to this SBIR contract was completed on time, and within budget. |
o Moreover the outcome was largely definitive and was at least as good as
f}: the target outcome of the proposal. This report is prepared to meet the
X
o 84 May 31 deadline for final report. In summary, the work was carried
L
A out on time, on target, within budget. This report is timely.
ﬂ\; In the interests of readability this final report is organized as
'. v
;:* follows:
!
o
< 0. Introduction
, 1. Overview Narrative
o
o 2, Detailed Narrative
{{f 3. Summary of tasks, work, discoveries, recommendations and
E%f alternatives
. 4, Future
. \ . “’;‘—ﬁ-“.—~' "—«
) 5. Appendices to

A. The technical part of the YLYK Ltd. proposal

w5
% S ‘5"
RN

which led to this contract
B. Tables of GF(2tN) arithmetic

- ok N

Tt
N C. Selected tables of Vandermonde matrices _ :;:
D. Tables of ENF (encode normal forms) produced by i ! ]
ij} cold precomputations V 'v. "l»;j,;f?‘“
N E. Examples of the encode/decode process S \A~.g:l’v
:é; F. Copy of Yeh/Reed/Truong paper on systolic multipliers é //' ‘
X’QS for finite fields # f J
gt' G. Copy of Bloom paper on threshold schemes
;_~ He Program for encodi?g procedure (including Stages 1, 2 and 4)
zﬁl 1. Program for decoding procedure (including Stages 1, 2, 3 and 4)
.ﬁ Section 3, "Summary of tasks, work, discoveries, recommendations
.} and alternatives” 1s the heart of the report. It describes how YLYK
f" Ltd. performed its agreed-upon Task 1 and Task 2. The reader may want
E§§ to skim it before going through the report as a whole.
By

o

T N A A I NN

DAY 1 o '\.'1.’ YORENLT AN -..’.‘ o " '.‘-_- e '.- Ten :.__-.'.(.':... el




',.V‘
¢

o
z - 1. Overview Narrative

l.1 Red Noise

.‘ ,.«

Appendix A contains a copy of the YLYK Ltd. proposal which led to

A
fi the contract on which this is the final report. 1In the interests of
readability we restate the idea behind the p/s/r processes, along with
.: some realistic instances.
A sender S and a receiver R are linked by n channels of
’1 approximately equal capacity. All communications are digital, i.e. are
) strings of bits (0 or 1). The sender and the receiver anticipate
;; traumas which will inactivate some of these channels. Nevertheless both
o the sender and the receiver expect at least k of the n channels to
;? continue to function. Here, as everywhere, it is assumed that k < n.
1 They face the "red noise" problem. How does the sender S encode b
;; k channels worth of information for sending along n channels to the
§3 receiver R 1in such a way that R can recover all the information
gf cheaply and quickly as long as any k of the n channels remain
' operative? The sender S must encode in ignorance of which k
b channels will survive the trauma and remain operative. Examples of the

red noise problem are numerous. We sketch out a few here. We will

return to them.

i. On-chip. Certain elements on a chip may fail permanently. The
number n of channels is typically less than 100, often less than

R

10. Here k 1s usually almost as big as n, since chips with lots

Pad

of hard failures are typically discarded. Perhaps k = n -1 is ,

.
o ]

especially important.

ii. Packet switching. Here the packets are the “"channels”.
Occasionally a packet is destroyed or irrevocably misrouted. The L

number n of total packets for many practical examples would be

b
i{S

ji intact, so k would usually be near n. Perhaps k =n -1 1is
ﬁ. especially important.

%

W,

%)

24

N

%
-
&

less than 200, often less than 20. Most packets should arrive

Fe

P IR -.'..‘q, e ..‘,’ “p

- - L I N T R I e I P Y I P TR Y (o T JRESNE R N ..-.‘...:
A NIRRT ALY R LY A GRS R 1 AL CRNRGE 0,20 RGN A SN




2t s
.
1)
1
v
'
[ 3
'
I
v
’
'
r
w '
’
P
e
o

.

s
i

] ) iii. Spread spectrum. Here a "channel” might be a frequency if
{ the technique employed is frequency hopping. Perhaps quite a few
j: frequencies are jammed. The number n of total frequencies should
?: usually be less than 60,000 and often considerably less than 4,000,
‘s k can vary all over the lot. 1In battle conditions we might have

. k < n/10, e.g. only k = 70 “clean" frequencies among n = 1,000
2 frequencies being used. Those who feel that this is a pessimistic
3 estimate should consult McEliece's recent paper on jamming in

AN

Longo's Springer-Verlag book, Secure Digital Communications.

i~

ive Hard wires or fibers. A control center on a weapons platform

3
%

(plane, ship, etc.) might be connected by n = 30 parallel fibers

to a propulsion unit, sensor, control surface, or weapons pod. It

Jrrr

might be desirable to maintain full communication even after 20

fibers were cut. Here k = 10 = n/3, 1In such examples n less

', 14

than 200 seems plausible. k can vary all over the lot.

o o
&

v. Multiple channels between manned centers. A city might talk to
a command post via a mixture of twisted pairs, fibers, microwave
relay paths and satellite links. It would be desirable to keep up
communication 1if half of the n = 20 channels joining them fail.

P SR, -

In all the foregoing examples the number n of total channels

,l',l‘

before failures occur would satisfy the inequality

o

210 = 1 < n < 65,536 = 2116

P A

}

(where we use the ALGOL arrow notation 2t16 1instead of the older

N exponent notation 216). We will adopt the inequality above once for
;s all as an explicit assumption :

).:

? At least one “"channel”;

ﬂ’ At most 65,536 "channels”.

(e

~{ The reader 18 asked to bear it in mind everywhere below. Another

? categorical assumption 1is:

5,

Every signal is digital.

o -

¥

’ .

-

|
!

B SANSY

T AT T € AT AT N . e T T At -  ee .- . .
RECOREEYE Y% 18 S N : ‘s . e, WA N U T AL y ., AT AN LAY
o ok S SR o, » . \‘\ N




'
&

LY
" -4

:

4 1.2 Bloom pool/split/restitute processes
¥ A solution to the red noise problem is called a p/s/r process. We
‘s will discuss only Bloom p/s/r processes and their close relatives here.
: See Appendix G for the first exposition of the idea behind Bloom

i threshold schemes and p/s/r processes. They make use of many of the

i ideas which arise in Reed-Solomon error control codes. But we will not
h explicitly pursue any resemblances to the latter structure.

ﬁ The idea behind a k-out-of-n Bloom p/s/r process is to enable a
" sender to use finite field arithmetic and linear algebra to smear k
kN channels worth of information into n channels worth of transmission to

; a receiver R 1in such a way that all the original information can be
F quickly reclaimed from the outputs of any k of the n channels, even
h if n - k of them do not carry any information to the receiver (i.e.

5 even if n - k of the n channels are inoperative).
3 Bloom's approach to building a k-out-of-n p/s/r process makes use
¥ of a field F containing at least n elements, and a k dimensional
vector space V over F. It is easy to verify that there 1is at least
one collection
i
B = {B(1), B(2), «.., B(n)} <V
.5 ‘ —

) of n vectors in general position in V (meaning that every k-member
f subset of B 1s a bagis of V). Sender S and receiver R agree on
2 one such B and refer everything to it. Given a list
2
' 1= (1), 1(2), «o., I(K)) C F¥
A
; of k pieces of information (i.e. k members of the field F) define a
b linear functional
5
- L: V+F
! with the property that
L(B(3)) = I(})

‘ﬁ for each positive integer j < k. These k pieces of information
? provide a complete unique specification of the linear map L since

N P S AR LI PP e
” "". v Y s A%, W .'-J

m “‘ .— ‘»-l,- .- . <

RN L RO DR TRTS D O A



7

LA AR
LA

\_&:

. iy
o
-

%
il

.‘_,‘ ‘.‘W 3
. - &-N-

Y o BN
e s

¥
X, .

’.

@,

P~ ~

I
27500 34T

v--. -..,.'—-: -.','. ATy T e e T e T R o

{B(1), B(2), ..., B(k)}
is a basis of V. But
{B(w(1)), B(w(2)), ..., B(w(k))}
is also a basis of V for any injection (one-to-one function)
w: {1, 2, ..., k} > {1, 2, ..., n}
So you can reconstruct L, and therefore determine the list
I = (1(1), 1(2), ..., I(k))
if you know the value of L at any k members
B(w(1)), B(w(2)), ..., B(w(k))
of the set V.

Now it is obvious how to encode and decode. To encode the list 1T,
form L and send L(B(j)) down channel j for each positive integer
j £ n. To decode (i.e. to recover I from the signals received on any

k of the n channels) form L and then determine

L(B(j)) = 1(J)

for each positive integer j < k. This is possible since any

B(w(1)), B(w(2)), «.., B(w(k)) make up a basis for V, and since a
linear map L with domain V 1is determined by its values on a basis of
V.

1.3 Making hyperfast Bloom p/s/r processes. Stages.

YLYK Ltd. set out to take this simple mathematical structure, the
abstract Bloom p/s/r process, and produce an abstract design of a p/s/r
process which would run very fast on very cheap hardware. In this Phase
I SBIR effort no attempt was made to produce or design hardware.

Rather, the purpose of the work was to produce an abstract design of a

.-.\_.\‘-‘..;5. ¥ o gt AT ALY
f AL

. *

A A A )

|

% -~ \.\‘.\- ay 5 \__qp. ﬁ‘ i::ﬁ\. d



it as et Satnte e Tre ] ‘1

- system capable of operating at megabit per second rates and above. On
A the basis of this abstract design the hardware design should be possible

with few or no further abstract considerations.

——

:22 Roughly speaking, the problems to be overcome fall into 4 stages:

(4.3

~;:‘ 1. Cold precomputation. The cold precomputation must be done before
. the p/s/r equipment is built. These precomputations will not slow

f::: down system operation. It would be perfectly acceptable if they

':af took months to perform, In fact they can be completed in a minute

?EEE except in very large cases discussed below.

; ) 2. Cool precomputation. The cool precomputations take place each time

'3: sender S and receiver R agree on the k and the n for a

‘%: session of communication using a k-out-of-n p/s/r process. The
N

cool precomputations will involve a minor delay, probably causing

no inconvenience. This delay will usually be less than a second in

St 8

reasonable sized cases as noted below.

-
K

-
P

b

3. Hot precomputation. The hot precomputation takes place after some

e
j-
o

channels have gone down. The receiver determines which k

channels are still operating. This amounts to finding out out

which subset B(w(l)), B(w(2)), «.., B{(w(k)) of B will be used.

e 4 Since the communication session is ongoing, any delay here is

) undesirable. Either you lose information on the fly or you pay for

.‘ a buffer to hold undecoded material until your decode goes on
stream. Unfortunately the hot precomputations can take many

%.' milliseconds. It is doubtful that a significant further

- improvement over the scheme YLYK Ltd. has formulated is possible

oy
%? here.

%S; 4, Real-time on—~line encode or decode., The real-time on-line encode

Y or decode stage should be able to keep up with high bit rate

{sh; inputs. In an "impedaﬁce matched” situation the computer clock

;s? should tick at least once per arriving bit. For example, consider

ﬁ;j a 5-out-of-9 p/s/r process. Suppose that each of the 5 operative

;;: channels carries a signal at 10 megabits per second and that the

$§ "matched computer clocks” in the decoding system therefore push the

};5 computer to perform 10 similar logical operations (such as XOR, ‘
h»

S R R T R A AT S 4



g~

IO 2 S

Y

4 l_'l-‘l;o; 4

%

]

13

Pat S oA b A s

PLICINP LIl et

Y3

o

o b

e | &~ ph

LAY by Sy

Ul i AAER A Yl B e e DANCRA Nk
~ AE R R ) "

i.e. exclusive or, of 4-bit words) per microsecond. It would be
desirable to produce decoded output on all 5 decoded plaintext
channels at a rate of 10 megabits per second. It appears possible
to achieve such throughput rates, but with a certain short lag
time. For example, the 10 megabit per second decoded output might
lag the received bit stream by 2 microseconds. In other words the
decoded bit streams proceeds at the same rate as the received
encoded bit streams. But the decoded streams lag the received

encoded streams by a phase lag of 20 clock ticks, i.e. by 20 bits.

We must deal with each of these four computational stages
separately. The first, the cold precomputation stage, is completely
noncritical, Neither time nor memory is important as long as the needed
output can be produced within months and does not consist of too many
computer words. The second stage, the cool precomputation, is not very
critical. Presumably it occurs in tranquil conditions while the sender
S and the receiver R are agreeing on a k-out-of-n scheme. Days could
elapse between the choice of k and n, and the time transmission
starts. And almost always seconds will elapse. It is therefore
unlikely that the procedure described below for cool precomputation will
delay timely receipt of transmitted messages. Stage 3, the hot
precompute, is usually the most critical. If it should take a second or
more, one must decide whether to lose a lot of bits or spend money on
buffers. Stage 3, therefore, requires extremely close attention. Stage
4, the real-time on-line decode, is crucial but not troublesome. There
are ways to carry Stage 4 out at very high bit rates, given adequate
hardware. There is a "phase lag"” i.e. a lag of several bits between
received input signal and decoded final signal. This lag can be reduced

to a few microseconds in existing TTL logic. But reducing it to zero is

an impossibility.

1.4, Making hyperfasf Bloom p/s/r processes. Extreme cases of

parameter settings.

So much for the four stages of computation. We turn now to
parameter settings. How sensitive i{s a k—-out-of-n p/s/r process to k

and to n?

e et e e e T e e A e e .
3 : % B FRLHL T TR S LA TE S LR ESR SR

A A T T g N S e g T o s



ASAH T TN T Te T Tal R RN R S L L GRS SR L SR ERCASIMANEAD ol B LA AL AIL AL A W S, vv‘v-‘—v-jl

2 8
R -

-
:32 First let us dispense with the four extreme cases. Thesc¢ are the
:ﬁ: two trivial cases k =0 or k =n and the two easy but not completely
(, trivial cases k =1 or k = n-l. A O-out-of-n p/s/r process is

;: silly. No information sent on n channels produces no information
:i% received. No p/s/r coding is required. The n-out-of-n case is far
:E: from silly. It is the present state of affairs. Send a different

) message on each of n channels and hope they all get through. No p/s/r
iéj coding is required. The l~-out-of-n case i{s also easy to deal with

:%: without p/s/r coding. Send the same message on all channels and hope

;ﬁ that at least one channel remains operative.

‘7‘ The (n-1)-out-of-n case is more interesting. It will also be

f} important in some applications. Synchronize the channels. To p/s/r

325 encode the information let the first n-1 channels transmit their
'ﬁ: messages unaltered. But at each time t, add (modulo 2) the bits on

| the first n-! channels and send this sum (it, too, will be a bit) on
fi: the nth channel. To decode when one of the first n—1 channels, say
:C: the jth, fails you do as follows. If £ € {l, 2, ..., n} \{j} the

e decode transformation is the identity. The channel is carrying its
‘ message unaltered. But if 1 = j, just form the sum of the bits on
‘ig channels 1, 2,..., j-1, j+l, ..., n. This will be what the jth channel
;i would have carried if it were still operative. Note that the cold

;’* precomputation, cool precomputation and hot precomputation are

- nonexistent. The on line computation acts on a single bit from each

}{: channel. And, if implemented by fast hardware as indicated in Figure
*$: 1.4.1 below in the 7-out-of-8 case, the output bit rate is the same as
': the input bit rate, but with a lag of 3 = log(8) bits (All logarithms
;; in this report are the information theorist's logarithm to base 2).

j; For the first time we note a point which will be addressed more }
.$3 fully below. FEncoding is a do-nothing operation on all plaintext
) channels (i.e. the first n-l1 = 7 channels), and all plaintext channels
f: remain synchronized. Encoding is a do—something operation on the
l{i 8th = nth channel. To keep all eight channels synchronized, the
‘i& receiver must do something to every channel. 1In the 7-out-of 8 case
2 this mecans 3 successive stages of adding O to what ~omes over every

) one of the first n-1 = 7 channels. A similar statement holds
,h. regarding the decode process.
»on

i3

O

- .‘.

- @R et e e e e .
L

-\tﬁ‘;‘nﬁ PRI, "D, i DT D P ".';\,“\ PV




LN S T
LA AN AN
I B

p et i
Py h

[
P AN

o

VAN

e
5}ﬂﬁﬁ”ﬁ;

o
P

+ NOP + +

&

' Figure 1l.4.1.

The 7-out~of-8 p/s/r decode when channel 4 is inoperative. Assuming
the modulo 2 adders (XOR) can operate as fast as bits are received the
output bit stream will have the same speed as the input bit streams but

will lag them by 3 bit positions. NOP means no operation. + stands

for modulo 2 addition. Information flows downward.




.
s

.
-

Sopes

2k B I &
LA } ; N
PRI A P

g

N
X2

' Figure 1.4.2

A vartant of Figure l.4.1. The receiver sends zeros into the decoder

input corresponding to the missing channel 4.

downward. .

Information flows




‘tf: ML e A i At el
N 11

¢ .

S

:;: In each of the four extreme cases described in this subsection, the
';{: decode process could content itself with treating one bit at a time from
(, each of the received channels. This is independent of =n. Thus a very
E:é cheap programmable logic array (PLA) implementation of a hyperfast Bloom
_:iﬁ (n-1)-out-of-n p/s/r process is possible for very large n. The lag
A time would be about log(n).
.Qi 1.5 Making hyperfast Bloom p/s/r processes. Mean parameter

j settings.

53N
A5 Turning now from the four extreme cases to all the other cases,
t;; which we shall call mean cases, we note that the p/s/r processes we are
"f: dealing with always satisfy the inequalities

-

o 2<k<n=-2¢<n¢65536 .
gia No mean p/s/r encode or decode can deal with just one bit at a time. In
i;i fact one must deal with "words™ of length at least log(n) from each
:5: channel., Recall that all logarithms are the information theorist's
'y logarithm to base 2 in this report. As noted in the YLYK Ltd. proposal
 ?:; to Air Force for this Phase I SBIR proposal, encode and decode will be
i:? done using GF(2%Q) arithmetic. As noted above, we will deal only with
;?: Q < 16. We have glready discussed the extreme (n-1)-out-of-n case.

'\ This extreme case can be dealt with using GF(2) arithmetic. In
fz:: dealing with mean cases we will usually make the following assumption:
e
Pass Q € {4, 8, 12, 16}.
=

\;; Thus we will often deal just with the arithmetic of GF(16), GF(256),
fﬁﬁ and GF(65,536). The reason for this is that 4, 8 and 16 bit words are
'i§ natural objects to manipulate on standard hardware.
_:f A case could be made for using only GF(65,536), i.e. for sticking
‘:r; to 16 bit words for standardization, since such an implementation can
:i: "do everything”. But this size seems unwieldy at present. It may be
’E:E better to try to get as much mileage as possible out of the GF(256)

i;ﬁ case, i.e. to try to get by with at most 256 transmitted channels. We
{2 will discuss some pros and cons later.
2
3o

v

RSN .'...t' S e '_"- L Te e = SRS R R TALTS ¥ LT LN LY e e e A~‘,~“
. . RS L \Lﬂ&i& RRER O Y \_AJ: LTS A T L SR AT



"
[ ’

A'l. .0' '4

]

—

[}

W -

o

e

I

~od

f;? 1.6 Making hyperfast Bloom p/s/r processes. Stage 4. Real-time

g on-line encode or decode.

NG

%a% In the mean cases of parameter settings one thing that does not

'ﬁ:i change with parameter setting is the nature of the real-time on-line
-\.U

- encode or decode in a superfast Bloom k-out-of-n p/s/r process. It is
NS matrix multiplication. Encode is so like decode that we will

ST

F}:. concentrate on the latter in this section.

‘s“b To each k-element subset

RN

TP

coc B* = {B(w(1)), B(w(2)), ..., B(w(k))}

B

-".: of

SR B = {B(1), B(2), ..., B(nm)}

-"‘-"

‘ “

o there corresponds a k by k matrix DEC[B*] such that

'\'-I\

SN . .

ol B(1) = ) DEC[B*](1,j)B(w(j))

\'::-

ot

ok for every positive integer 1 < k. The sum is over all positive

;- y integers j < k. As long as a given collection

‘r
N

k) {w(1), w(2), ..., w(k)}

.r""
J«

. of channels is operative this square matrix DEC[B*] is unchanging. So

" the block diagram for decoding the ith channel is contained in Figure
ﬁi l1.6.1 below. For illustrative purposes Figure l.6.1 describes a
T

\6 7-out-0f~25 Bloom p/s/r process in which the receiver knows that

‘

" channels 1, 2, 5, 7, 10, 12 and 19 are operative. Since 25 £ 32 = 245
133 we can use 5-bit words, i.e. GF(32) arithmetic. So the 7 inputs to
{?H the decoder at time t are WORD1 on channel 1, WORD2 on channel 2,
. X%

'f*i WORDS5 on channel 5, ..., WORD19 on channel 19. Here of course

[

z:‘ w(2) = 2
v

:;% w(3) =5
3 .

F. 7 .

N

":.\' W(7) - 19

1535

1

T2

T
._f.:o

b ¢". e

"

e et N N e T e T T A e W \.-.w."‘- '\:.v TN '\'“_-",s‘ SIS N AN




YT

.

oL TTTT

e W T By T LA A A D St il g

N NNy

-
C‘. -

R
‘f} .'.\ -‘}

S
e

} J‘:‘.\\

~ ..
»

L L P PG
SN

Ny

-
N

s

..
NS

Yo

'-" ~ 'J‘ L,

-'.\

-
L

s

.
o
by
L
123

UOTITPPE T OINpPOW 3STIMITQ °*3°T “Spiom Jo ¥OX = +
uorlerado ou = JoN
*PABMUMOP SMOTJ UOIJBWIOJUT
*IBTTUIS S} apoouy
*1/s/d woorg ¢z-jo-3no-;
® 103 2pooap jo arduexy
1°9°1 @an3yy
+
+ +
dON + +.
(L°T)[«9]D3ax (9°T) [»9]0day (ST) [#9]03ax (vT)[x9]03ax (€°T) [+9]0day (Z2°7)[«9]030ax (1°7)[«9])030x
(L) QoM = (9)n gdoM (6)m QYoM = (v)4 gUoM = (€)M qQUoM = (Z) QYoM = (1)~ Qiom =
6 [(HOM Z1aH0om OTaHOM LAYOM SQUOM adOM [ GjOM
TS T A -lnqnd .9 8 v o - e - - - - _
Lt - g v SAN S (AR RS P X . Y G A o U Y " e
A p-..f\? ..-.r NPT AR .“ v ) ,.as.m?&&&k, .,-“-wm-.-aﬂa. [ -.ﬂr\lﬂlm- “MW#..-“Vtw a\fﬁ)\\. .W".)ﬁk



RO
’, ':"-’ "‘
P

'r v vi@
hAnA,

;.t’.';‘
MA A

7,
'-

Wy

X

BN XN
iy

.‘- :. l. '

.
1]

PN AT

‘\'-.

-
»

L e VY e Nl

14

On the face of things it would appear that one would have to use 5
cycles to £fill in the (variable) S5-bit multiplicand WORD w(j) 1into the
box which multiplies by the (fixed) 5-bit multiplier DEC[B*](i,j),
then take more than 5 additional cycles to perform the GF(32)
multiplication, then 3 more cycles to move through the adders (the add
operation is XOR). This would involve an output stream slower than the
one bit per cycle input stresm. This, however, is not the case. We
will show below how to produce a one bit per cycle output stream, using
appropriate hardware. Of course the output will lag the input in
phase. In the case above the lag will be about 18 cycles.

Again we note the need to keep parallel channels synchronized.

This means that even the plaintext channels will be "encoded"” (or
“decoded”). This will be done by multiplying by 1, then adding 0O,

then adding another 0, and so on for the proper number of steps.

1.7 Making hyperfast Bloom p/s/r processes. Stage 3.

Hot precomputation.

Recall that we are considering the mean cases of parameter
settings. Turning now from Stage 4, real-time on—-line decode, to
Stage 3, hot precomputation, we come to an important problem. You want
to shorten the hot precomputation because you must store or lose
received bits while it takes place. It turns out that the hot
precomputation should be done somewhat differently for different
parameter settings in the mean cases of parameter settings.

In Section 2.5 below we take up this matter in more detail. If k
or n-k 1is small, the hot precomputation proceeds quickly.

In summary, the only rub anywhere in the system occurs in the hot
precomputation. And it is worst when k 1is close to n/2. In many
applications, such as digital voice, where loss of one second's worth of
transmission is tolerable, the rub can be ignored. In other
applications, its presence'may necessitate enough buffer memory to store

several second's worth of received material.

T G S T 0 P A e S A R A SO A AD RE ARP

Mo e e % » e .9 %™ " oYy LL..'_A‘,'_A.‘P_A 1‘1‘-3'.'- 1\.;" i‘- S e ._.\ ML ': et .‘. fe .' '.




Of course there is inevitably one other place where simple common

sense dictates that expense is Inevitable, not for memory to store
signals but for memory and processing capability to do computations. In
16 bit applications in which 40,000 < k < n there are a lot of received
channels and some very big (40,000 by 40,000) matrices to build. It is
important to keep in mind the admonition that most systems with more

than 256 channels are impractical. We return to this matter below.

1.8. 1Interfacing error control devices and cryptographic devices

with p/s/r processes

p/s/r processes work best on channels which are virtually
error-free while operative (like some optical fibers), but which can be
rendered inoperative for long periods (e.g. by breaking the fibers). If
the operative channels are also subject to intermittent errors then one
should combine ordinary error control with p/s/r processes in the manner
shown in Figure 1.8.1. First p/s/r encode, then error control encode,
then transmit, then receive, then error control decode, then p/s/t
decode. Doing an error control encode before the p/s/r encode would be
silly. We will not belabor this point further.

Cryptographic encode should probably be placed before p/s/r encode
and cryptographic decode after p/s/r decode, as in Figure 1.8.2. But
this is a matter wﬁich will no doubt be determined by an appropriate
branch of DOD, and we will therefore not treat it further.

Figure 1.8.3 shows the concatenation scheme for all three

processes., All figures are to be understood as showing information

flowing downward.

e e e o e A e A D e ;-';-td



N 4 OUT OF 7 p/s/r ENCODER
i\

Y ¥3

ECE ECE ECE ECE ECE ECE

v

ECE

2227

>

KNI WG

A

b

XN A

ECD ECD ECD ECD ECD ECD

"

XA

* 4 OUT OF 7 p/s/r DECODER

53 Figure 1.8.1

¥ ECE = error control encode

ECD = error control decode

o

~..' L - D*- TN I-'.I.~."." )
3 « PP

e e,
e

-------

Satba. s & A £ 8.0 Mam

G W R

PR .

e oded SN adh




i " - g 2y LA N A AR A e A RS IRE D S A S ARk e AR AA A A nd S Sl At S A |

17

\< ‘P‘ -
o,

Py

P |
v

AN

> CRE CRE CRE CRE

4 OUT OF 7 p/s/r ENCODER

oY
N 4 OUT OF 7 p/s/t DECODER

i_; Figure 1.8.2

::*, CRE = cryptographic encode

}; CRD = cryptographic decode

LT 4
LI

LIS -

. Ya " Vgt gy 0 A e, A R A L INL S S P SRR
AP APRII VIR "}.E\-L..',\J:-.!)i":l\:i A VAR RO S LR -.i

SRS YR A/L RS

)
l‘v.v v, e 0

A S AR A
v, W) )




RSl Ak - Al e S S S T A AL S I a g |

4 OUT OF 7 p/s/r ENCODER

<
ﬁ‘g ECE ECE ECE ECE ECE ECE ECE

4 OUT OF 7 p/s/r DECODER

Figure 1.8.3

W AT N e At L et

AR OO DU SR N, Ry R G a N,

. - - 3 i
WGV NAIOHTN N, ,._. Yy



B 87X
ARAr
- § MR
[

.

R T SN I

R
REPCPLPLIAPR

Land

NN -

A RN
v,

- o
L.

)

LA

'I Py P)

K TP
OO

OSSN
P Y X YA

.

Xl

ALY

w

»

AT
SRS,

i g ) '
ANILTSN

)

Fd .
AAA YA

&

\
¢

Ko

ot

L.

P AT ‘f.'("

2. Detailed Narrative
2.1. Finite field arithmetic. Octal notation for polynomials and
residue classes of polynonials.
It is no longer possible or desirable to avoid technicalities. We

first make explicit the finite field arithmetic behind the Bloom p/s/r
GF(2) = Z/2Z 1is the field with two elements.

-, multiply, *, and divide, /) is

processes. Its

arithmetic (i.e. its add, +, subtract,

in the tables

summarized

/J 0 1

0 undefined 0

1 undefined 1

Thus x +y = x ~y for every x, y € GF(2), the only nonzero product
is 1 * 1 =1, and division by zero is impossible (undefined). You can
put these things another way. +, =, and * are modulo 2 operations,
and you cannot divide by zero. Alternatively, + and - are XOR of

bits (exclusive or), * 1is AND of bits, and you cannot divide by zero.

Let p(x) be a polynomial over GF(2) which is irreducible

(unfactorable) over GF(2). Examples of polynomials over GF(2) which
are irreducible over GF(2) are:

x

x + 1

xt2 + x + 1

xt3 + x+ 1

xt4 + x + 1

xt5 + xt2 + 1

xt6 + x + 1

xt7 + xt3 + 1

x48 + xt4 + x13 + x12 + 1

xt12 + xt6 + xt4 + x + 1
x416 + xt12 + x3 + x + 1

S HE S
L)

~, ~'~ \' - f~(~"~ -

+

S S D SN Ny I
NI PC W A AL L AL TR SO RS XY, L0 X

" |



w [t
r PPNV

.
[N [

o
LA
P .

a

}" 1

NN

A
S

O

Examples of polynomials over GF(2) which are reducible over GF(2)

(i.e. polynomials which can be factored) are:

xt2 = x * x
xt2 +x = x* (x +1)
xt2 +1 = (x+1) * (x+1)

xt4 + x12 + 1 (x%2 + x + 1) * (x12 + x + 1)

xt4 + xt2 + x + 1

(x + 1) * (x43 + xt2 + 1)

Let n be a positive integer. The field GF(2tn) 1is defined as
follows. Let p(x) be an nth degree (monic) polynomial over GF(2)
which is irreducible over GF(2). Let (p(x)) be the principal ideal
generated by p(x) 1in the ring POL of polynomials over GF(2). Then
GF(24n) 1is the quotient

GF(24n) = POL/(p(x)).

of the ring POL modulo the principal ideal generated by p(x). For
example 1f p(x) = xt3 + x + 1 then the version of GF(8) = GF(213)
gotten by setting

GF(8) = POL/(p(x)) = POL/(x*3 + x + 1)

consists of 8 residue classes modulo p(x) = x%3 + x + 1, namely

o
]

<0,0,0> = CLASS (0) = {0, xt3 + x + 1, ...}

<0,0,1> = CLASS (1) = {1, x%3 + x, «..}

|-
]

<0,1,0> = CLASS (x) = {x, xt3 + 1, ...}

I
[}

<0,1,1> = CLASS (x+1) = {x+l, x13, ...}

lw
L]

<1,0,0> = CLASS (x*2) = {xt2, xt3 + x%2 + x + 1, ...}

&
]

<1,0,1> = CLASS (xt2 + 1) = {xt2 + 1, x#3 + x, ...}

v
i

<1,1,0> = CLASS (x%2 + x) = {x%2 + x, x#3 + xt2 + 1, ...}

o
N

I~
[]

<1,1,1> = CLASS (xt2 + x + 1) = {x%2 + x + 1, x43, ...}

It is too tedious to use a notation such as

------------------




s -
XXX
;'ls;:;.;

ey ¢

i

S

NN\
)
-

-
¥

g

¢
..'l .'. l.f"'.l.':l N '\
AL,

1

A it 1

..........

21

CLASS (xt2 + x)
or
<1,0,1>
or
{x12 + x, x#3 + x12 + 1, xt4, ...}

for a member of GF(8). Therefore we adopt the octal notation used in
the MIT Press book of Peterson and Weldon on error correcting codes. An
arabic numeral with neither overbar nor underbar is a whole number.

Thus

7 = VII = seven,

the number of days in the week. An arabic numeral with an overbar is a

polynomial over GF(2). Thus
7 =<1,1,1> = xt2 + x + 1.

And an arabic numeral with an underbar is a residue class (modulo some
agreed upon irreducible polynomial p(x)) to which a polynomial q(x)
belongs. Thus if p(x) = xt3 + x + 1 1is agreed upon in advance then

7= {xt2+x+ 1, x#3 + x42, xt4 + 1, xt5 + xt3 + x + 1, ...}

—

= {7, 14, 21, 53, ...}

= CLASS (7) mod (13)

is the residue class modulo x*%3 + x + 1 whose lowest degree member is
T = xt2 + x+ 1,

We now agree on polynomials over GF(2) of degrees 2, 3, 4, 5, 6,
7, 8, 12 and 16. Each of them is irreducible over GF(2). In fact,
each of them is a primitive irreducible polynomial over GF(2). There
is no need to describe the notion of primitive here. Suffice it to say
that it is a convenience, and is explained in Peterson and Weldon.

There are nine standard polynomials to be understood everywhere
below. They are the polynomials on which our version of GF(4), GF(8),
GF(16), GF(32), GF(64), GF(128), GF(256), GF(4,096) and GF(65,536) are
based. It is, of course, well known that there is (up to isomorphism)
only one Galois field of any given size.

The nine standard polynomials are




s

4
g

4 4 *
AL

By 7

N
r

AR R
2 3a'a%s

s “‘y
A

wh AN LY
s
4fﬂ~s

A
4.'.

2‘

\

v
& o
.‘-'_.‘

LA

ne

Y

!

""

-----

T o= x42 + x + 1
13 = x43 + x + 1
23 = xth + x + 1
35 = x15 + x12 + 1
103 = xt6 + x + 1
200 = x47 + x13 + 1
435 = xt8 + xt4 + xt3 + x12 + 1
10123 = xt12 + xt6 + xt4 + x + 1

210013 = xt16 + xt12 + x13 + x + 1

Members of GF(2%4) = GF(16) can thus be represented as 4-bit words,
i.e. "numbers" expressible by two (underbarred) octal arabic numerals,
neither of which is 8 or 9. Members of GF(2%8) = GF(256) ™are"” 8
bit words, i.e. "numbers™ expressible by three (underbarred) octal
arabic numerals (8 and 9 will not be used). For GF(2%12) = GF(4,096)
we use 12 bit words, i.e. foursomes of underbarred arabic octal numerals
(no 8 or 9 allowed). For GF(2t16) = GF(65,536) we use 16 bit words,
underbarred 6 "digit” arabic numerals (with no occurrence of 8 or 9).

To exemplify the arithmetic of GF(2%n) we will give tables for:

GF(4) as POL/(xt2 + x + 1) = POL/(7)
GF(8) as POL/(x%3 + x + 1) = POL/(13)

GF(16) as POL/(xt4 + x + 1) = POL/(23)

They are contained in Appendix B.

2.2 The linear algebra of Bloom p/s/r processes.

As noted above, the extreme parameter setting cases




'~
-
r)
&
-
o
.
o

(2] Ot
P N O
il R Rl TP

SO

S

A, Y, Gy G Y i

I3
-

[

D) J A

.

W e e
ae's s . "

”
)

J
%)
§
A

" 0y AR S

(k,n) = (0,n)
(k,n) = (1,n)
(k,n) = (n,n)

require no coding. The extreme parameter setting case
(k,n) = (n-1,n)

can be very simply coded and decoded using only GF(2), and without
cold, cool or hot precomputation. Thus we will consider the mean
parameter setting cases, i.e. the cases involving (k,n) such that

2<k<n2<n<24b=0Q< 65536

Here b 1s a parameter describing the size of (i.e. number of bits in)
the computer word to be used in practical implementations. 1Its place in
the scheme of things will be obvious below.

Let us begin with the 2tb by 24b (i.e. Q by Q) Vandermonde
matrix with entries in GF(2%b) = GF(Q). This square matrix VAN is

of the form

F— et

1 0 9 9 RN ° 9

i 1 .1 1 <. 1 1

12 242 213 ... 28(b-2) 24(b-1)

1 22 244 2% ... 212(b-2) 242(b-1)
VAN=

1 28(b=3) 212(b-3) 213(b~3) . . . 28(b=3)(b-2) 2#(b=3)(b-1)

1 24(b-2) 2$2(b-2) 243(b~2) . . . 28(b=2)(b-2) 2#(b=2)(b-1)

Note that the bases are (underbarred) members of GF(Q) and the
exponents are (unbarred) integers. It is a fact that 2 1is a primitive
element Iin GF(2%b) 1if GF(2tb) 1s realized as POL/(p(x)) where

. <

A ONs 'J AT AL

.'-"-"'i.\ oy Y '-"-'- e - - \"' .'--.-'.. '..‘ ®, ‘-“..-".-’-‘-'..-.. . .' ’..-'.-".-V'.- o ‘..4 . .

= ke

R ST RRI

- ST

= T ) IJAﬂ._J [




- p(x) 1is a primitive polynomial. We will always use fields of this

{; form. Examples of Vandermonde matrices are
Q)
.I

—
(1 o o o
K2 L A T |

VAN =

s 1 2 3 1
S
X 13 2 1
& - —
]

-

in GF(4) = POL/(x%2 + x + 1) = POL/(7), and

-

» ~

2 (1 0 0 0 0 0 0 0

&

- 1011 1 1111

¥

: 1 2 4 3 6 1 5 1

1 4 6 5 2 3 71 1
§ VAN =

‘ 1 3 5 4 71 2 6 1

X 1l 6 2 7 4 5 3 1

2

= ‘ 17 3 2 5 6 4 1

. 151 6 3 4 21

:1 e —

4

g

y R

i in GF(8) = POL/(x*3 + x + 1) = POL/(13). See Appendix C for examples of
o Vandermonde matrices, for various fields.

Il

.. Now let LEF[k] be a special Q by k submatrix of VAN. It

j consists of the first k columns of VAN. 1In our GF(8) example .
2, )
s i
el B
St B
-

)

5

£y #
> 3
7 3
< :
< .
s




DL R A R R A PR R A L Lk BT . S . N L RN - -

- 25
& -
o
._'1
-“
' —
{ 10 o
: 111
L
: 1 2 4
) 14 6
, LEF(3] =
’ 1 3 3
1 6 2
1 7 3
\ - L =2
< 1 3 1
! . =
\ It is a well known property of Vandermonde matrices that every k
» by k submatrix of LEF[k] is nonsingular whenever k satisfies the
N
> inequalities
Q
o <k<Q=2%.
;' Thus the rows of LEF[k] can be regarded as a collection of 2%b = Q
- vectors in general position in a k dimensional vector space V over
” GF(2%b) = GF(Q). But recall that 2 <k { n-2 £ n < Q. This means that
= we have the wherewithal to build a Bloom k-out-of-n p/s/r process.
) Consider any list w(l), w(2), ¢.., w(k) of distinct row indices of
! LEF[k], i.e. any injection
.‘n
-
::- w: {l’ 2, o ey k} i {l’ 2’ se oy Q}o
N
= There is obviously a Q@ by k (coding) matrix CODw corresponding to
\‘ this w such that
N
5. ROW[i] = ) cop_(1,3)ROW[w(])]
N
T for every positive integer 1 < Q. In particular
‘. ROW[1] = ) CoD_(1,§)ROW[e(3)]
K
B o
L =) CODe(i,j)ROW[j]
s .
»

when ¢ 1is the identity injection. All three sums above are over

positive integer j < k.

. ARG PR N " R K
.' Y '.' ‘\'.' .'. N NP I ® SIS m‘ o \&&i‘\' J'.'h!}\_;x.Ln'._\:\_\‘;}.-}.n-‘:n.‘::.‘_-"




o The Bloom k—out-of-n p/s/r process now works as follows. Let

ii I(l), I(2), «.., I(k) be the b-bit plaintext words the sender S has
\ on source channels 1, 2, ..., k at time t. The sender encodes them
:: to form b-bit words H(l), H(2), ..., H(n) for sending along broadcast
{_ channels 1, 2, ..., n as follows

H(1) = ) cop_(1,3)1(3)

2

for positive integer 1 < n, where the sum is over positive integer

LA
.1“11"."..'-

J £ k. When the receiver R ascertains that channels

w(l), w(2), ..., w(k) are operative, he decodes by finding

I(i) =) CoD_(1,3)H(w())

e

for positive integer 1i < k, where the sum is over positive integer
j < k.

OOy

> Before looking at implementation in the four stages we make a few
iz: comments. First, encoding is a process which depends only on k and
‘:: Q, not on n (except in the trivial sense that you don't bother to
( ' encode any messages H(i) for channels n+l, nt2, ..., Q) and not on
S} which channels are operative and which are inoperative. After all, the
i; sender is not likely to know which channels are operative.

i; Mathematically speaking, encoding makes use only of the (fixed) identity
a injection e. '

:; Decoding, on the other hand, makes use of the (variable) injection
;Q w which embodies information known only to the receiver, namely which
‘ E channels w(l), w(2), ..., w(k) are operative. So decoding depends on
t: k, w and Q. Consequently decoding depends implicitly on n, since
-ii 1 S.w(i).ﬁ n for every positive integer 1 £ k.

_Eg If either sender S or receiver R can profit by taking n into
;:3 account in a a more explicit fashion in their calculations, they are
g free to do so. But they dqn't have to. We will show below how to take

:3 advantage of a knowledge of n.

i; Comparing this description with the YLYK Ltd. proposal, the reader
:: will note our assumption that
| 2
0 n<2thb=Q.

' ,~n‘ -

3

o

T S A LY A T N L L ET e e e e e
= A = oY . v LI L4 -




h]
[

P

n
.

oSN T

o
g
&

* -

o
-

)

f 2.

NN N AT AR

That proposal held forth the possibility of the inequality

n<Q+2

in many cases.
We abandoned this tack, fine tuning the field size, for four

reasons:

1. It shortens word size by only one or two bits where it 1s possible;
2. It complicates coding and decoding where it is possible;

3. It is a very difficult problem to determine all the cases in which
it is possible. See the MacWilliams and Sloane book on error

correcting codes for more on this;

4, We now know how to achieve the desired goal of attaining hyperfast
Bloom p/s/r processes without fine tuning the field size. The
hyperfast real—-time on-line decode is attained in a different way,
by use of systolic multipliers, as we shall see below. Moreover,
fine tuning field size is of no appreciable utility in attacking
the other crucial problem, shortening the duration of Stage 3, the

hot precomputation.

2.3. The first stage of computation in the mean cases of the Bloom

p/s/t process, the manufacturer's cold precomputation
Recall that we have a field

GF(2tb) = GF(Q)
and that

2 <k {n2<nf2% =Q.

The entire problem of encoding and decoding in a k-out-of-n Bloom

p/s/r process amounts to this. For each injection
we {1, 2, «es, k} » {1, 2, ..., n}

(including the identity injection w = e) find the k by k matrix
CODw such that

E R T ST S F I P S e e
[ -’.'.".. SRR Ca et e e Sa et Tt
F I e e

LRI AR SRR Syt . RSO
R SRR PR AT TR T, T o, TP, R N L P S Sy _*

“u gt e N




(Y

e

\..‘. Y

ROW[1] = ) cop_ (1,3)ROW[w(j)]

where the sum is over positive integer j < k, and where ROW[i] is
the ith row of the Q by k matrix LEF[k]. Recall that LEF[k]
consists of the first k columns of the Q by Q Vandermonde matrix

VAN over GF(Q). Once CODe is found, form
H(1) = ) COD_(i,i)I(3j)

(where the sum is over every positive integer j S.k) for every
positive integer 1 { n to encode. Once w 1is chosen and CODw is

found, form
I(1) = ) cop_(1,3)H(w(1))

(where the sum is over every positive integer j S_k) for every
positive integer i < k to decode.

Obviously it is desirable to carry out computations as early as
possible. We have agree to send the k plaintext messages
(1), T(2), ves, I(k) (i.e. members of GF(2tb) = GF(Q), 1i.e. b-bit
words) down channels 1, 2, ..., k respectively. These words are
unaltered. They are transmitted as is.

.

H(1) = I(1l)

H(2) = 1(2)

H(k) = I(k)

What we need is the encoding for channels k+l, k+2, ..., n. In other
words we need to express rows k+!, k+2, ..., k¥n of LEF[k] in terms
of rows 1, 2, «.., k. To 'say we need dependences 1s to say we need
vanishing linear combinations of the rows of LEF[k]. We need,
therefore, a basis for the left kernel of LEF[k] (The left kernel of a
Q by k matrix L 1is the set of all length Q row vectors r such
that rQ 1is the length k row vector with all zero entries). Let us

take GF(8) as an example.

s




29

_0_.1_ni —| =] ~] 1_.12
ol =1 »n| ~| v} ] =] «
ol ~| ~1 ml ] ] ol =]
o =) o] &l ~] ]| n] ™}
ol =] ] n} < ~] ) ol
o =} <] vl n] «f ] ~|
of —~| &) ¢} o] w]| ~] n]
_l_ = =]~} =] 1_.M:
"
-
[}
o«
Sl
<
55
~d
) .ﬂ mﬂ- -lc--n-.-' .J.oac -.oc -.\-4--- ..q .--. T
SIS . CXXNNND -

is nonsingular.

Tﬁerefore its kernel has dimension

and a calculation

1

has rank 7.

Ol =] v ~] o] o} =
o) ~1 ~| m| ~f n| ol <l
O =] o] Nl ~] <] n] i
O =] | v | ~| f ol
Ol ~| <] wl n| N ] ~]
of =] &l <] ] V] ~| n]
ol BT ] B BT B I T
(]
™~
[< 3
<3}
[ |
PR A X R § EErErN 'y PN
HBARARAS 13 -w o \....‘.NP,,..... <

!i‘i‘cﬁ\':

SSTE)S

-
s,

- 3

- " 8
LS

K5

«
v J

TR

ey

Ol ~f ~] o] | n] vl =)

%2 ". '..- ‘."
e e . 2t e

o) ~1 vl ~] ~| =] »n] m]

1

Ol =] e n] | ~| ] o]

AT

O} ~| @] 0wl Nl N ) ~|

ol = ~l <] ®f ©] ~| »n} -

shows that it is spanned by the row vector
LEF[6] =

’
LR R R AR h g - » - J -~

(RAPIT:  LALAL S SXAA S A i RS

eSS Acint’ 'R WXV Jnernrr - 4zuw.-¥u.rfu.~¥.7\ L



L 30 |
L 2 |
RS !
SR
0%
T has rank six. So its kernel contains the kernel of LEF[7]. A
" - calculation shows that it is spanned by the row vectors
W
o3 (11111111}
::" and
x‘:z
N (762534101
::i:::j Similarly, one easily verifies that
T
RN
(11111111 f[ro000] [oooog
o 6253410111111 1}1=102020290290
N
82 23213100(flrz2s38| (00000
2 146352
ks
:ti 135471
g,; 16274
o 11325
N 15763
: - 3
h2os
a:.‘ Going on in this way we arrive at the encode normal form ENF matrix
[}
' over GF(8):
‘.|
& 3 pme o
3804 I L 1 1 1111
n.‘.\' -
» 72 6 5 3 4 10
hY 2 3 2 1 3 1 00
4
s 1
3 5 2 5 1 0 0 0
43 6 1 0 0 0 0
3 21 0 0 0 0 o0 |.
i .- - - - - = = =
‘:'-"f
1.1.‘
XL
R
:
o
e




.
.
W
—

This matrix ENF is a Q-2 by Q matrix with 1 1in the (3, Q-j+l)cth

Y] :l‘_" Je e

Yy ) PP W N

) RS I S S I PO PO A P N T W T LY R W R ot i a® a® o n® . .
O N N P R G S € 1 S G O S LS L S TS, WAL, G R

( entry and with O entries everywhere below these "antidiagonal” 1 s.
y: In fact the matrix product ENF * VAN is a Q-2 by Q matrix with zeros
;l above the "antidiagonal”. Given any Q by Q Vandermonde matrix for
if GF(Q) it is elementary linear algebra to find the Q-2 by Q matrix
= ENF such that:
A
; 1. For each positive integer j < Q-2 the top J rows of ENF form
ES a basis for the left kernel of LEF[Q-j]
N
: 2. The antidiagonal entries (i.e. ENF(j, Q-j+1) for every positive
‘i integer j £ Q-2) are 1
ﬁ 3. The entries below the antidiagonal are 0. ;
:ﬁ This is the substance of the manufacturer's cold precomputation, ;
~$ Stage 1. A computer program incorporating this precomputation is :
‘3 contained in Appendix H. It could take months on an IBM 370 and still 1
. be perfectly satisfactory, since it will be done just once before the 1
\4 devices are fabricated. 1In fact the GF(16) computation takes seconds
:; on an IBM PC. The GF(16) ENF is a 14 by 16 matrix whose entries are
2: 4-bit words. See Appendix D for examples of ENF matrices for various
. fields. -
; The GF(256) cold precomputation, even without the shortcuts
: employed in Appendix H, takes far fewer than a billion machine cycles,
:: i.e. a few minutes of mainframe time. To store its output requires
:5 254*256 = 65,024 bytes of ROM. The GF(4,096) and GF(65,536) cold
-t precomputations take longer. i
fg Since finding a kernel basis and triangularizing its matrix takes a )
Y small constant times the cube of the dimension of the vector space,
Tﬂ finding a 4094 by 4096 ENF matrix for GF(4,096 = GF(2t12) could ’
TE take as many 10t13 single ‘precision integer operations and single word 3
t: logical operations on an IBM 370, This could take months. To store the 5
§ output you would need more than 200 megabits of ROM. )
{
'q ‘
\: 1
: 3
N ]
;
8




To find a 65,534 by 65,536 ENF matrix over GF(65,536) = GF(2t16)
is a bigger task., Here we are talking about a fair sized multiple of
2148 operations, say 10%t17 to be on the safe side. Of course, this
assumes no parallelism in the computer. But parallelism and vector
structure are keynotes of the computation. However it looks like months
of calculation on better adapted machines such as a CRAY I or the new
MPP being put up at NASA, both of them well-suited to the sort of linear
algebra computations required. [t also means scrapping the PASCAL
program in Appendix A and writing code which exploits the peculiarities
of the machine it runs on. Also, storing its output is nontrivial.

This output consists of 65,534 * 65,536 = 4,294,836,224 16-bit words.
This means almost 9 gigabytes of RUM in the devices which implement such
p/s/r processes,

What about larger fields? It seems doubtful that they can be

exploited economically in the 1980s, or that they would be used even if

computations were cheap. Some objections are:

i. 65,537 channels is a lot of channels. 1Is there a plausible
application of k out of n p/s/r processes in a situation
where n > 2%16 = 65,5367

ii. Fields larger than GF(2416) cannot be handled on a 16 bit
microprocessor without adopting unnatural expedients which slow

things down.

iit. Stage 1, the cold precomputation stage in which ENF is formed,
gets expensive and time consuming in GF(2tb) for b > 16,
For example production of an ENF for GF(2420) 1looks like a
multiple of 2460 operations on a Von Neumann machine, say

10420 operations.

iv. Storing the ENF in fields bigger than GF(65,536) requires
more than 9 gigabytes of ROM,

f o A Tt At A P e Ty N ey SRS N T N " " AT S RS
S S N S R ROt Qi T AT A T T 4%

oL
TS NS WA

e e et o ¥
L IR R DN




N ]

33

N Y b

.
.

“Y

Summarizing the first stage, the manufacturer's cold precomputation

-

stage, we see that the 2tb - 2 by 21tb encode normal form matrix ENF

has the following properties (pessimistic estimates):

P

-
-

_J‘

\':

\Q

)

- Galois time to space to

:f field produce ENF store ENF

9

\

\ GF(16) = GF(2t4) PC minutes 1 k bits
L

.::

-\.

. GF(256) = GF(218) mainframe 600 k bits
. minutes

o 8"

o GF(4,096) = GF(2t12) mainframe 300 m bits

- months

!

'y

';: GF(65,536) = GF(2%16) supercomputer 70 g bits

b, years

2.4 The second stage of computation in the mean cases of the Bloom

p/s/r process, the sender's cool precomputation.
Recall that we have, once for all, chosen
GF(24b) = GF(Q)

Thus the sender S must take k b-bit words at time t and encode

'. 3‘ - L) -” -
CORRAHNNENH, | 1A

o

this information into n b-bit words for transmission. Moreover

)

2<k<n2<ng<2th=Q

-t Yy .. «
N3V g

4

L R R A S & P AU SN I T 1 1 R A L t . -~ o=
AL T P VIS 8 R A S A O c e

. .
. e e
BN W T A AN

Y VW

P U




]
“
A
e s s 'y
a%e"a

»
-

2 33

L
)

. [ 4
rlﬁ'

/4

_.‘-".0 .
‘l"

S
',‘r'l‘l
e SN

RN
", “-{. v ,- ". I-I

Sy
N N

f
» J‘.Js.‘ o S

£
44

"l
o N
PN

’

R
)

RN

%

AN
Aoyt

(St

(.

e

X3
)
o

34

The ENF matrix is available to both sender and receiver. It contains
information about VAN or, more specifically, about
LEF{2], LEF[3], ..., LEF[Q-1]. The first row of ENF expresses the Qth
row of LEF[Q-1] (and therefore of LEF[Q-2], ..., LEF{2]) as a linear
combination of its first Q-1 rows. The second row of ENF expresses
the (Q-1)st row of LEF[Q-2] (and therefore of LEF[Q-3], ..., LEF[2])
as a linear combination of its first Q-2 rows. And so on, to the
bottom row (the (Q-2)nd row) of ENF. This row of ENF expresses the
third row of LEF(2] in terms of the first two rows of LEF[2].

Once k and n are agreed upon, the sender S and receiver R
fix their attention on LEF[k]. They can ignore its bottom Q - n
rows. Thus they are looking at the upper left n by k submatrix
UPLEF[n,k] of VAN. Clearly, the dependences they both need to know
among the rows of LEF[k] (or, equivalently, of UPLEF[n,k]) are all
contained (implicitly at least) in rows Q-n+1, Q-n+ 2, ...,
Q - k of ENF,

For example a 3-out-of-7 p/s/r over GF(8) 1is based on knowing

the dependences among the first seven rows of

1.0 0]
111
‘ 12 4
1 4 8
LEF[3] =
135
16 2
17 3
151

and these are all expressed in rows

8§ ~-7+1=2
8 -7+2=3




. 35
&; -
n;i: of ENF, i.e. in the matrix
e
7 02 8 3 3 4 L O
= 2 3213100
7. MID[2,5] =
o 3525 10 00
= 43 86 10 0 0 0
A?E Let MID[Q-ntl, Q-k] be the n - k by Q submatrix of ENF consisting
:;E: of rows Q-nt+l, Q-n+2, ..., Q-k of ENF. We now have the only matrix of
s interest to the sender S and the receiver R during this
‘x; communication session using this k—-out-of-n p/s/r. The last Q - n
TE; columns of MID[Q-n+l, Q-k] are, of course, zero. So they can, and
:&3 will, be ignored in implementations. But a theoretical discussion
- proceeds more smoothly if we speak of all of MID[Q-nt+l, Q-k]. The
.}ﬁ sender S sends channels 1, 2, ..., k 1in the clear (i.e. uncoded).
\;{ But he needs to know how to encode channels k+1, k+2, ..., n. To do
4\§: this the sender S can use elementary row operations to go from the
&\ " already "triangularized” MID[Q-nt+l, Q-k] to a "diagonalized” form SEN
q?. in which column k+1 has all zeros except for a 1 1in the bottom row.
,:ES Column k+2 has all zeros except for a 1 1in the row above the bottom
,3;: row, and column n has all zeros except for a 1 1in the top row. This
.?- is a trivial variant of the process of reducing to Hermite normal form.
‘ﬁ: Once he has produced the matrix SEN = SEN[k,n,Ql, the sender S has
:ﬁ: finished his cool precomputation and he can start to encode and send.
?E His encode amounts to
H(3) = ) SEN(j,g)I(g) = ) SEN[k,n,Ql(],8)1(g)
kY for each j € {k+l, k+2, ..., n}, where the sum is over positive
) integers g £ k.
ol The cool precomputation is linear algebraic, like the cold
:E: precomputation, but it is shorter. For a k-out-of-n p/s/r process it
::: involves bringing an already triangularized matrix with n-k rows to
\EE a1 diagonalized form. This involves about (n-k)(n-k+1)/2 row

operations. Therefore, approximately n(n-k)(n-k+l) arithmetical

operations are involved, i.e. subtractions/additions (XORs) and Galois




Ao A ANb r JA J AN i s AR SN et St gt St St ) DRI i
2 o )
o] -
n"‘.

% |

w7 field multiplication. It is only necessary to find n-~k Galois field

QEH rectprocals if you do things carefully. This is helpful, since Galois

*- field divisions require the Euclidean algorithm and are much slower than

ﬁ; Galois field multiplications (unless we merely store arithmetical

‘Eﬁ tables, an attractive expedient if Q < 256).

%ﬁ Consider a device built with Q synchronized parallel processors

] and a stored multiplication table they can all draw the same product
§ﬁ§ from simultaneously. On such a device it would take about c(n-k)?*2
tgi machine cycles for the computation, where ¢ is around 10, Thus for
N GF(16) = GF(Q) (i.e. 2 <k < n-2 < n < 16) we need 16 4-bit

processors, a 16 by 16 table of 4-bit words (1 k bit ROM) and around

»”

535 10 * 1412 = 1960 machine cycles for parallel implementation on 16

::i processors. It would take about 50,000 cycles for implementation by one
2: processor. This means a delay of several milliseconds before the sender
ad S can send. For GF(256) we need 256 8-bit processors, a 256 by 256
Z:éj table of 8-bit words (512 k bit ROM) and a delay of the order 10 *
;Ei 25442 = 645,160 machine cycles (i.e. about a second) before sending
L:;: could start. With only one processor this delay could rise to 250 *
. 645,160 which is approximately 200 million machine cycles. So it could
'ii take many seconds before traansmission began. Of course the sender could
:;E send plaintext over the first k channels while walting for the coding
%ﬁ* process for the last n - k channels to be found.

‘.; If some important (k,n) pairs were incorporated into firmware

i¥ the sender's cool precomputation could be made part of the

%ﬁ§ manufacturer's cold precomputation.

Ay Turning to GF(65,536) a parallel implementation would need 65,536
:;: 16-bit processors, and 16 * 65,536%2 bits of ROM (i.e. 70 gigabits)
Eé: The delay before sending could be as much as 40 billion machine cycles,
:Eg an hour or so. Using just one l6-bit processor and doing the

)

multiplications on the fly to dispense with the need for ROM could raise

~\
4

LA AN

the delay before sending to. years.

So, yet again, we see indications that 65,000 channels is a lot of

Ao

channels to spread your messages among. But 256 channels once again

looks very promising.

1%
.

"ﬂtﬁébﬁﬁﬁzﬂk

VIR P
. .

.,-\. AR

LR ERT AR LT w . “a e
- By



NS
DA
PO

~

AT

‘- l“‘n .'.

L AR A

PE P

Let us summarize the second stage, the sender's cool precomputation

stage. He extracts (from ENF) and row reduces (to a sort of Hermite

normal form) the matrix
matrix SEN[k,n,Q].

sent along channels

MID[Q-n+1, Q-k]

to produce an

n -k byn
This matrix describes how to form the encoded words

k+l, kt2, ..., n at time t 1in terms of the

.
LR O S

I

. »

g
“.

.:- A
A A

o wg

n.‘.. " '\. \ ‘

“plaintext” words sent along channels 1, 2, ..., k at time t.
The work and memory required have upper bounds (since n < Q).
These upper bounds are shown in the table below:
Time to Number and size Storage
Field precompute of processors required
by parallel for parallel for
implementation implementation SEN(k,n,Q)
GF(2%4) = GF(l6) milliseconds 16 4-bit 1 k bit
GF(2t8) = GF(256) seconds 256 8-bit 600 k bit
GF(2t12) = GF(4,096) minutes 4,096 16-bit 300 m bit
GF(2%16) = GF(65,536) hours 65,536 16-bit 70 g bit

A computer program incorporating the cool precomputation is

contained in Appendix H.

—a_ Ay am Aalal




............

2.5 The third stage of computation in the mean cases of the Bloom

p/s/r process, the hot precomputation.

The receiver R 1is moving right along, receiving all k plaintext
channels from the sender S for a while, and then some channels fail.
Using means which lie outside the scope of this Phase I SBIR effort, the
receiver finds at least k channels which are still operative among the
n channels the sender is using. He makes a choice of exactly k of
these operative channels any way he chooses, perhaps by picking the
first k of them but almost certainly in a predesigned automated

manner. Such a choice amounts to an injection
w: {1, 2, «oe, k} » {1, 2, ..., nl}.

Like the sender S, the receiver R has already singled out the matrix
M[{Q-ntl, Q-k]. 1In practice he has trimmed off all the zero columns on
its right side.

On the face of things the receiver would have to use the
information contained on the injection w to set up a way of using
elementary row operations to do a reduction of MID[Q-nt+l, Q-k] to a
variant of Hermite normal form before real-time on-line decode could
proceed.

This would appear to take as many as a small multiple of nt3
operations in the small k case (since the relevant matrix is
n-k by n). But there are artifices to reduce the computation time

uniformly to yield a bound which is more like a small multiple of
P(n,k) = n * (n-k) * min{k, n-k}

operations. Clearly P(n,k) S_(nf3)/4 S_(QT3)/4, (the worst case being
k = n/2).

Moreover P(n,k) 1is rather small (is less than kn%2) if k is
small, and is smaller still. (is less than n(n-k)42) if n-k 1is small
(i.e. if k 1is large).

The routines which achieve this improvement over straightforward
linear algebraic row reductions are based on a trivial lemma, which is

nevertheless worth stating.

PR '--'-' < - \'v-‘ S -\."- \."-._‘ e\t .
- }l.‘.“ '-(_f_ lL \f. -l'A_f." \l"ﬂ‘i » e e "Pl&ﬂ')‘ fﬁ > .\_"AA.'.\.', e m




X
»

R
I'.I
P4

>

’ %
[h ~-
[

r

4 4, YA

NN
~ R
6« 4 & 8

e,
AT

R
» . )
el " A

. .«
ROLRY

Lemma: Let

DATA = {1, 2, ..., n-k} !l RANGE(w)
DESIDERATA = {1, 2, ..., k} \ RANGE(w)
DELENDA = {n-k+l, n-k+2, ..., n}\ RANGE (w).

Then the sets DATA and DELENDA contain the same number of members.
Moreover the set DATA is disjoint from both DESIDERATA and DELENDA.,

Proof: Let A be the number of members of RANGE(w) which are no
larger than n-k. In other words the set DATA contains A members., It
follows that there are k — A members of RANGE(w) which exceed

n - k. Hence the number of members of
{n-k+1, n-k+2, ..., n} \RANGE(w)
is equal to
[n - (n-k)] - [k - A] = A,

Obviously DATA ' RANGE(w). On the other hand DESIDERATA  DELENDA
contains no member of RANGE(w). This ends the proof.

A computer program incorporating the hot precomputation is
contained in Appendix I. The idea behind Stage 3, the receiver's cool
precomputation in 'this program is to exploit the Lemma. It enables the
receiver to avoid carrying out a complete row reduction of
MID[Q-n+l, Q-k] to Hermite normal form. The DATA/DESIDERATA/DELENDA
breakup of the set of column indices {1, 2, ..., n} has a partial
reflection in the row indices of MID[Q-n+1l, Q-k]. The result is that
many rows are irrelevant to the production of the decode matrix CODw
described here. Moreover it is often possible to use this breakup to
partition the rows of MID[Q-ntl, Q-k] into three sets, one of which
can be ignored, and the second of which can be used to act on the

third. A careful reading of the program will also explain the bound
P(n,k) = n * (n-k) * min{k, n-k}

on the number of operations, a much smaller bound than the bound nt3
which unimaginative use of standard linear algebraic techniques would

suggest.

PRI




.
l‘l"
RN
‘-‘.'-!
Taats as

~u#¢'
AL
< _#

Ry -
»

»
PR Bt

‘e
~
~
e

[
!

2.6 The fourth stage of computation in the mean cases of the Bloom

p/s/t processes, the real-time on-line encode or decode

After finishing the third computational stage, the receiver's hot
precomputation, the receiver R 1is ready to decode. He has a matrix
REC whose rows are indexed by the set DESIDERATA, and which has n
columns. Thus REC 1is no larger than a k by n matrix., Let
j € DESIDERATA. Then REC(j,j) = l. Moreover REC(j,k) = O for every
k € DELENDA. Recall that + coincides with = in our Galols field
GF(21b) = GF(Q)). It should be evident that the receiver can reclaim
the word T1(j) which has been sent along channel j at time ¢t from

the words H(w(g)) (where 1<gX< k) according to the formula
I(j) = ) REC(j,w(g))H(w(g))

for every positive integer j belonging to the set DESIDERATA. The suw
above 1is over positive integer g < k.
Similarly the sender has used his cool precalculation to produce a

matrix SEN such that

H(j) = ) SEN(j,g)I(g)

for every integer j € {k+1, k+2, ..., n}. The sum is over positive
integer g < k.

The problem of the sender in encoding, and of the receiver in
decoding, is to calculate quickly., This will be done as shown in Figure
1.6.1 above. So what remains is to multiply fast. And we can take
advantage of the fact that in each of the top boxes in Figure 1.6.1 the
multiplier remains fixed, though the multiplicands change with time. To
carry out a multiply as fast as bits can be fed in is the goal. This
can be done with systolic multipliers as shown in Appendix F.

v are a -
. . .

Ca e e b, .
o -

.'Q'. '.. -" I.- I.A I.. -. .,
A PO PP L N




g LIS AR N : Cpie g ghe v M pan ity 0 RAMCRE D AR gt e s e e diad e i M GV o ‘T‘ff‘foTfI"‘T*w
J.j . A A 4 ) . g

I
L7 ol 41

To carry out a single GF(16) multiplication at maximum speed
PR requires about 300 cells. To carry out 16 multiplications

. simultaneously requires about 4100 cells. The cells themselves

xs consist of fewer than 10 active elements. So a very pessimistic
‘:5 estimate of the hardware required to carry out a GF(l6) based p/s/r
xﬁﬁ process is 100,000 active elements. This might require one or two
programmable logic arrays.
;:*E The implementation of a GF(256) based p/s/r process would be
::ﬁ: larger. But, taking account of the fact that constaut multipliers
?1: eliminate the need for flipflops in the basic cells in the
\ ’ implementation, we find that even GF(256) based p/s/r processes can be
ES; implemented using at most 256 PLAs. The chips for a p/s/r process
;:; involving at most 16 channels will cost less than $100 today. For a
E‘? p/s/r process involving at most 256 channels the price would almost
Ad, certainly be below $1000.
.éi No pricing has been attempted, since no working prototypes exist.
_}:: It seems likely that these cost estimates could be reduced substantially
.Eﬁ in a production mode. Other costs, such as boxes, wiring, etc. are easy
Y to estimate.
';ﬁ There is an alternative approach which appears both faster and
:ii cheaper. The idea is to substitute memory for computations by storing
:? tables of products and lists of reciprocals, perhaps even tables of
h quotients.
jﬁ This is particularly attractive in the real-time on-line encode or
is decode since a single decoded channel (i.e. a single processor) keeps
,¢$ using the same multiplier. So each microprocessor can ask a common
i; stored Q by Q multiplication table for a copy of the appropriate
:iz Q by 1 column corresponding to this multiply. Multiply thus becomes a
‘3? memory fetch and the memory might even be resident on the microprocessor
s chip. A GF(16) based p/s/r process would need only 4*16 = 64 bits of
f:t memory for each microprocessor. A GF(256) based p/s/r process would
. require 8%256 = 2048 bits per microprocessor.

e
AL
o
At
e e
PR PR

v.'n"’!. ";‘ ;. .

1N

P L T O I G A i e S T e T AN A T IR T e e ot
. WA Sy e S PP N A A S AR PG 21 MRS Lok AT I A RTINS |

fo” s e -,
« v v ¥
PRI, 4




. ,.‘
s 8.
Y

e

"
]

PPN N X .

~ O e N

PALLI LI

4

P07 0

s '..f'.- s »~

[kl
]
s a'e

EA O f‘ N

Ll

?
’d
¢
¢
&
'
4
89
%
<
~
~
q

This sort of memory capacity goes for pennies, Of course, when
there are n = 65,536 channels the picture changes. For each channel
you need 16 * 65,536 = 400 k bits of memory.

It is again worth stating explicitly that the decoding process and
the encoding process are merely two varlations on a theme. After cool

precomputation the sender forms

H(j) = ) SEN(j,g)I(g)

(where the sum is over positive integers g < k) to encode channel j
for each j € {k+l, k+2, ..., kin}.

After hot precomputation the receilver forms

I(3) = L REC(j, w(g))H(w(g))
g
(where the sum is over positive integer g < k) to decode channel j
for each j € DESIDERATA. So it suffices to describe the real-time
on-line decode. The real-time on—line encode is more straightforward.
The abstract design shown in Figure 1.6.1 is the scheme which
should be used. Once again we recall the need to maintain
synchronization of channels in encode and decode. As in Section l.4.1,

it is easy to do.

2.7 Examples of Computations.

The programs contained in Appendices H and I have been used on
examples, which are included. Appendix D gives tables of ENF for
various fields GF(Q) produced by the cold precomputation program in
Appendix H. Appendix E contains examples of the encoding and decoding
processes as carried out in Stages 2, 3 and 4 by the programs in

Appendices H and 1.




yv_uﬁg:ufcyﬁfggnr..tf;;-w
i,ﬁ 3. Summary of tasks, work, discoveries, recommendations and
:E: alternatives.
i
:ﬁ: The contract between AFOSR and YLYK Ltd. to perform the work
:ﬂ: reported on here describes two tasks.
0
- Task 1: Implement the heuristic procedure described in Section 6 of the
e proposal by means of computer programs, in order to produce explicitly
‘E;i the hyperfast pool/split/restitute encode and decode algorithms of the
fi?j Bloom technique. Analyze the results, putting the matrices in the most
‘*ﬁ{ convenient form, using further computer programs 1f needed. Determine
\ﬁ.’ the explicit solutions of the cases of most practical importance.
EAY
;i; Task 2: Develop a set of design principles for the implementation in
;:3 hardware of such p/s/r processes by means of an existing 16-bit
- microprocessor.
2
;f Mathematically, hyperfast Bloom k-out-of-n p/s/r processes break
ﬁ%& up into cases and into stages. There are four "extreme” cases. The
‘o case k =0 1is silly. The cases k =1 (send the same message on all
r‘; channels) and k = n (hope that all sent messages get to the receiver)
:;% are trivial within the present state of technology. The case k = n-l
2 {s trivial from a.mathematical and an engineering viewpoint. But it
fﬁ seems important and may not be currently in use. 1Its implementation
38 should be separate from the remaining "mean" cases. This implementation
:;i involves 2n - 3 bitwise XOR gates in the format shown in Figures
N 1.4.1 and 1.4.2. No precomputations are required. For Q = 4000
’fu channels and k = n-1 { Q this involves fewer than 8000 gates and a
':i; phase lag (as described above) of some 12 bits.
;ti: All other cases, i.e.
bu;:
‘ 2<{k<n2<n<QqQ,
W
_Z{: are called "mean” cases in contrast to "extreme” cases. In view of the
't&i facts turned up in the narrative above we make
¢
o




K'Y :A.-
P

Iy S *

’
o o

O ~ 4

(et}
P,
.

o.l ‘.-
e r e l.l .

o

o s
.

- o
0K NANKAD

PRI

o S L A

AL

l. l-"
'."-."u a'e

L4
e b

. "‘“
o

4
a'a

IA‘I...‘

Ca

e e g e
AR
AL PIL N S e

‘l’.l‘...:-::b..s:'..: i\

F)

A
A sl

.‘

16

L
v
Je)

A3 ..-
4 \.‘..f.-l..l. :.

G4
o
v

-

Concentrate first on hyperfast Bloom p/s/r
Over GF(2)

Recommendation 1:
GF(2), GF(16) and GF(256).

(n-1)-out-of-n p/s/r process for any reasonable size

processes over you can

implement an

n. It will act on l-bit words. Over GF(16) you can implement a
k-out—-of-n p/s/r process whenever

2 <{k<n2<n(Xlé6.
It will act on 4-bit words. Over GF(256) you can implement a
k~-out-of-n process whenever

2 <k {n2 <n < 256,

It will act on 8-bit words. These three implementations will be
general purpose (i.e. the boxes will allow the user to vary k and

n).

Recommendation 2: Somebody who intends to use more than 256

channels should consider dedicated (i{.e. k and n fixed in
firmware or hardware) boxs and should try strenuously to keep the
number of channels small. 4000 channels seems to be at or above

the technically feasible upper bound.
For the mean cases

2<k<n2<ng2th =Q

The

first two are noncritical straightforward linear algebraic reductions

of a Bloom p/s/r process there are four stages of computation.

and we will not consider them further here, except to make

(k,n) will
be widely used (e.g. all Fl6s will always communicate with base by

Recommendation 3: 1If a particular parameter setting
means of a 77-out-0f-92 p/s/r process) then the second stage of
precomputation, the sender's cool precomputation, can be dispensed
with (more exactly, can be incorporated into the cold
precomputation performed before the boxes are manufactured) in
boxes dedicated to 77-out-of-92. The third stage of computation,

the receiver's hot precomputation can be performed expeditiously.

A To A Y T Y o NN 2 N N A R T, Gk, S G L L R L R PR O
N L) 3 - . by | p




e el S A M A A AR N A et

A dedicated box can also free a participant in a battle from
unnecessary attention to details. 1t will usually be cheaper than

a general purpose box.

Recommendation 4. Maintain synchronization of parallel channels in
encode and in decode. Do this by "doing something™ trivial to the
plaintext channels so that they acquire the phase lag associated
with the channels which are encoded (or decoded) nontrivially. We
have already discussed the obvious, and inexpensive, expedients

which suffice to maintain such synchronization.

Recommendation 5: If it is desirable to combine p/s/r processes
with cryptography or conventional error control then the following
architecture should be employed. Encryption should precede p/s/r
encoding which should, in turn, precede conventional error control
encoding on the sender's end. By the same token conventional error
control decoding should precede p/s/r process decoding which

should, in turn precede decryption.

If it were built today a memory intensive ultraparallel prototype
of a general purpose k-out-of-n send/receive box for 2 { k £ n-2 £ 254
would be configured as follows. It w:uld have about 1 mbit
of ROM, broken up into 512 kbits to store a GF(256) multiplication
table, 510 kbits to store ENF and 2 kbits to store a list of
reciprocals of the nonzero elements of GF(256). For these purposes
four 256 kbit (= 2418 bit) ROM chips will suffice. The box would
employ 256 8-bit processors, perhaps Z80s, to do the cool

precomputations (when switched on send mode) as well as the hot
precomputation (when switched on receive mode). There would be no
logical harm, and only a small time penalty if n 1is over 200, in

having the precomputations done as if n = 256, the maximum number of

- e

channels. Cool and hot precomputations would take about a second.
The real-time on—~line decode would be done by 65,536 = 25642

dedicated "dumb” processors. The processors will be arranged in 256

.
bk

‘

clusters of 256 processors. There might be as many as 256 dumb
processors on one PLA chip. During a given session (i.e. for given k

and n 1in send mode, and for given k, n and w 1in receive mode.)




. S A A A S A S S A A M A S A S B LSRR ERCR OSRGOS OO O SO S |

Each processor would use a 2048 bit RAM which stored an appropriate
column of the GF(256) multiplication table in ROM. This RAM will have
been filled by the Z80s during precomputation. The 8-bit word arriving
on channel 1 will be split into two copies eight times so that a copy
of each arriving word goes into each cluster of 256 processors on its
ith channel. When a word arrives at a dumb processor the processor
multiplies that word by its session constant, (i.e. treats the word as
an address and outputs the contents of that address). After that the
outputs from each cluster are XORed together through 8 layers as in a
deeper version of Figure l.6.1. This yields decodes or encodes for each
channel. This requires 128 mbits of RAM and 65,000 (extremely) dumb
units capable only of outputting the contents of an address. This
configuration would require 512 RAM chips with 256 kbit capacity each.
We have noted that one mbit of ROM will also be needed, as well as 256
280s. The dumb procesors can be parts of a PLA., Presumably some 256
PLA chips would be capable of holding the neceded 65,536 processors.

The system would require shift register storage devices (perhaps
1000 cells per register) and would have to verify synchronization of
inputs and impose synchronization of outputs. This would require sone
sort of synchronization pulses in the bit streams entering and leaving

the box. A promising method is to use two voltage levels for bits and a

third for synch pulses, as is standard in television transmission in the

e U. S.

i&; These estimates are all on the highly pessimistic side, since

3&? detailed hardware design has not yet been undertaken,

:.:: A smaller device in which 2 < k £ n-2 < 14 would require sixteen
gfi 4-bit microprocessors, less than 3 kbits of ROM, 256 dumb processors and
o 16 kbits of RAM. Phase lag would be about 10 bits.
,:;i The splitting scheme in Figure 3.1.1 looks forbidding in two
*:}ﬁ dimensions. But in three dimensions it is very simple, no matter how
'x > many channels there are. Figure 3.1.2 is a different rendering of the
;g;: same process. It suggests regularity of the architecture more directly.
20

oL
Tt P Y et AT e et et et ar A L e Th LT T et " “ - o . T . PN TRl Y I P S




w.. S9UTY ButodIno om3 8yl jo yoes uo Adod suo ndino pue ‘31 jo saydod om3l ayew ‘Induy ojyey = i SPIOM U YOX =

.
\ 121d33Tnu Jue3Suod B Aq sindul aalsseoons £1dyanm = J938T833 IJIYS =
3 *PIBAUMOP SMOTJ UOTIBWIOJU] °STIUUBYD INOJ JO 2pOdap 103 DFIBWAYDS I0BIISQY  °*y°1°*g @andyy
"
h ¥ £ Z I :
ﬁ“. h .-.4
[ | J ! o
X + + ]
h + + Y
3 | x
1.. I ....A
1.. + ...4
X g
”. ¥ ¥ .....4
w L — )
a 4
m ”--m
. o)
‘.V --llA
_-.” ~ ,...-A
F, = — o
A — S
.. 1 . y
B [ Ny
5 N
y. "
3 i
a Y
———t

' [ ] [ ] [ =]

. :

or, 0, 2, 8, 4 A8

------.IMQMRQ. IR M M A A AT ML o o v ¢ x w , -
I XAKKAAS AN Sttt GV AR *:-...ﬂa-...)f ¢ L




(e T A R T e S A e e dar faend ~w
BEACEAINAMAEM TAChd hA hA et A ER A S AR A i A i A D EARERNEI A o Slurihg AR a2
. . o e 0 R e R SRS PICHRG AR A R Y

48
w(4)
w(3) SR
SR
A A *« l
+
A A * I
[ A S
+ +
A *
!
4
‘|
*
*
+
*
+ + . 3
i
|
A * ‘
|
+
[ Y — *
"
+
— _...{ *® +
* 2
*
+
|
|
+ 1

Figure 3.1.2
Alternate abstract schematic for decode of four channels




There are a number of choices facing somebody who designs hardware
- implementations of p/s/r processes.
YLYK Ltd. has found a very large number of ways to decode. We

; finally fixed on the DATA/DESIDERATA/DELENDA approach to minimize the
number of row operations at the receiver's hot precomputation stage.
-f But other more pedestrian approaches sometimes use less computer code.

In subsequent efforts, these alternative approaches should be borne in
o) mind. Which one is used depends on what aspect of the decoding process
o is most timportant. Our approach was to minimize the time interval

between discovery of what chanaels were inoperative, and beginning of

A real-time on-line decode.

:é There is one alternative which should be resslved as late as

E% possible in an SBIR Phase II cffort to produce a prototype. The reason
i: for delaying a decision is the continual shift in relative costs and

b speeds of hardware in the marketplace. The alternative in question is
. whether to use computation or memory to do Galols field multiplies and

divides. One the one hand there are systolic multipliers. On the

Dl 2t ]
N Pl
P s

other, a table of GF(16) products requires only 16%*16*4 = 1024 bits

‘ of memory. The table below tells the story for various fields,

‘.J

2

3

a Field Number of Number of Number of bits
. bits to store bits to store to store list
A table of products table of quotients or reciprocals

o

~ GF(l6) 16*16*4 = 1024 16*15*%4 = 960 15%4 = 60

\‘

- GF(256) 256*256*%8 = 512k 256*255*%8 = 510k 255*%8 = 2k

__ GF(4,096) 202 m 202 m 50 k

A~ -

o GF(65,536) 69 g 69 g l.l m

>,

:c Memory is cheap. The problem is speed. If words can be accessed
¢

:ﬂ quickly enough, the use of lookup for multiplication and division is

N

< attractive. XOR of words will, of course, be used for addition and

..

SRS - CROAR R G

subtraction.

.......




YUY

50

:jf Consider a GF(l6) based p/s/r process. 1If each of 16 4-bit
j;; microprocessors has 64 bits of memory "on-chip” the receiver's hot
L!I precompute can load the appropriate column of the multiplication table

;a into these 64 locations on each microprocessor. This will reduce

. multiplication to a lookup of a 4-bit word on a list of 16 words. A
- GF(256) based p/s/r process would need 2048 bits of memory "on-chip”
available to each of the 256 processors used in real-time on-line
decode. Multiply would be lookup of an 8-bit word on a list of 256

T words afcer the appropriate column of the multiplication table had been
loaded into a given processor. What we have said about real-time
on-line decode applies also to real-time on—line encode, of coursc.

The relative merits of this approach, as opposed to a systolic
system for computing products algorithmically, could change drastically
as new products came onto the market or the prices of o0ld products fell.

Another unresolved alternative concerns all three stages of
precomputation. Should we use many "smart”™ existing processors for the
precomputations or smarten up the custom designed processors used for
real-time on-linec encode or decode so that they can carry out the
precomputations as well as the encode/decode?

Many of the cheapest old 4-bit and 8-bit processors operate below
1 mhz, whereas newer more expensive PLA can be driven faster. 1t would
take development time to configure smart PLA to perform precomputations,
whereas existing processors can be quickly programmed. It seems prudent
to delay this decision as long as possible, with a view to the state of
the components market the day it is made. Other choices seem more
straightforward. It hardly seems worthwhile to try to fine tune field
size so as to get, for example, a 17-out—of-34 p/s/r process over
GF(32). The simplicity of assuming that n 1is no larger than the field
‘ size is worth seeking. Possible exceptions to this approach can be nade
on an individual basis, and will likely lead to a dedicated single

purpose box, such as J-out-of-6 p/s/r process over GF(4),

L
e

)

w5
(A

D N AR

o e e e e -.»_.-.“-'- -&
. Te e e Y S et ata’ o



Pt}

l‘l‘l'
AR
PR R R

A

rd

o
LN

.

YA

n o~
4, l'.l'l‘..o s »

LWL N

PR
LI
3
LI

o 4

4% Y

&8

i
¢ L

6f

%

b I ]
.' a Q’{k‘ ‘_‘D

AN
k’\ a

“

S

>~

4 4 & G4
A
R S Sl Ny W W

DY Y g JOCA
l'.A"A*L'L"-"‘-' !1’:'. LA

a
[y

"4dhf ﬂl

" Tt " . - - '-'.c .- . Q.-
. ...' RO \‘.s' ‘q' ~ -f\q.‘ - \- N

51

4, Future.

At this point, what remalns is to cast the p/s/r processes into
hardware. Three obvious general purpose (i.e, variable k and n)

implementations would be:

1. (n=1)-out-of-n, for n < 1000 wusing GF(2) arithmetic on 1-bit

words and requiring ao precomputation;

2. k-out-of-n, for 2 { k < n-2 < 14 wusing GF(16) arithmetic on
4-bit words and requiring precomputations of a few milliseconds in

(cool) Stage 2 and (hot) Stage 3;

3. k-out-of-n for 2 < k < n-2 < 254 using GF(256) arithmetic on
8-bit words and requiring precomputations lasting about a second in

Stage 2 and Stage 3.

Tt would be interesting to produce a few dedicated (i.e. fixed k

and n) implementations such as:

4, 3900-out—-of-4000 using GF(4,096) arithmetic on 12-bit words (in
practice they would probably be the last 12 bits of 16-bit words)
no Stage 2 precomputation, and a several second Stage 3

precomputation.

9. 100-out~of-4000 using GF(4,096) arithmetic, no Stage 2

precomputation and a several second Stage 3 precomputation.

6. Some half-and-half implementation, i.e. a k=-out—of 2k for the
largest value of k which would yield a tolerably short Stage 3
(hot) precomputation. Possibly a 500-out-of 1000 implementation
using GF(1,024) arithmetic on 10-bit words could hold the Stage 3

precomputation down to just a few seconds.

One mathematical topic which was not targeted for the Phase I SBIR
effort is dynamic reconfiguration. Suppose a sender and a receiver
start out using a 200-out-0f-250 p/s/r process to communicate over 250

channels which are all operative at the start. Suppose that a new




i A e e 2t AR S A AR SN AN E SR S S DAt ans ‘?_-.-.._ AR A s et A it S Sl Mk Frx .ﬁ" TERLY TSR ».,?
Bl : ST S - - - - . . . LT .

.
-

A

.

P
W
[ 3]

i

owve [
; .
.

.

.

g

channel goes down every few scconds. It is probably possible to do the

necessary reconfiguration precomputations one at a time after each

E

P

failure so as to keep communications going with negligible interruptions

:;W as the receiver migrates from one set of 200 channels to another

‘E; “"nearby” set of 200, to another, and so on.

if Careful analysis might be able to reduce the Stage 3 hot

) precomputation times, given that only one channel at a time goes down.

;;: The viewpont of this proposal is that the receiver deals with n—-k

'EE channel failures at once.

':. An engineering/ergonomics consideration which will have to be

{ tackled in Phase II, or shortly after, is the question of how the
receiver will ascertain which channels have gone down. Will 1t be by
human decision that a channel carries nothing or carries garbage? Or
will it be by some automated means of sensing when a channel goes sour

:7; statistically, and is therefore presumed to be down? Or will it be by

i:f sending periodic check sequences on each channel, the idea being that

:i} their absence on the receiving end signifies channel failure? Or will

.. still some other system be used? There are many existing protocols and

(_ algorithms to sense when a channel is or iIs not operational. If

:ij possible a p/s/r process box should be a module in a larger syster.

35 This architecture would enable the user in the field to decide which

;i method of sensing inoperative channels is appropriate to the system in

~ use.

(ij Such considerations may or may not influence the p/s/r hardware

':g directly, but will certainly be important in the context in which a

Q& p/s/r process is imbedded. Matters of this sort will be taken up in

} y more detail in YLYK Ltd's SBIR Phase 11 Proposal to AFOSR. Up to now

é&f spced has been the dominant consideration. In Phase II cost will come

‘}; more to the fore,

o

(]

7

5

fut

2

o e T R R K G ate et tettm et e - NN
PR L LRI X PRI o e N . . . . ._-l
RS A0 2N ~ AN 14 o * - PRI



Al

.-'\

A s

o
x\\‘rr.

Appendix A

The technical part of the YLYK Ltd. proposal
which led to this contract

e T I T
.‘. O ......

AR

L L

2]

 ..x\uu\.

N ALY

\\l—*\.ﬂ \--vnuhn.ﬁ‘-

LA A A

.---!



2 "‘. -

A -

g ¢ (.:4 - U.S. DEPARTMENT OF DEFENSE

= SMALL BUSINESS INNOVATION RESEARCH PROGRAM

e PHASE I-FY 1983

& PROJECT SUMMARY

l«

\.: .: . —_— ——— e -

N | FOR DOD USE ONLY

\:::: Program Oftice Proposal No. ib;);; EO- T ’

-y ] B TO BE COMPLETED BY PROPOSER T

Name and Address of Proposer T

YLYK Ltd.
PO Box 7966

Ann Arbor, Michigan 48107

Name and Title of Principal Investigator

Mr. Bob Blakley
President, YLYK Ltd.

Title of Project
High-speed low-cost ways to get messages from a sender to a

receiver when some channels linking them become inoperative.

Technical Abstract (Limit to two hundred words)

Military communications systems are subject to trauma. Certain channels fail for
protracted periods of time. The red noise problem arises when some, but not all, of the
channels linking a sender to a receiver become inoperative. The solutions to this problenm
are called pool/split/restitute processes. P/s/r processes amount to ways to encode
digital messages at a sending node so as to make sure that all transmitted information gets
through and is decoded correctly at the receiving node whenever at least k out of the n
channels linking those two nodes remain operative. P/s/r processes are designed to work
even though the sending node has no way to tell which of the channels it is using are
inoperative.

It has been known for at least two years that the encode and the decode operations
in a p/s/r process are faster and simpler than those in any but the weakest and most
trivial error correcting codes. Moreover the bandwidth expansion is typically smaller in a
p/s/r process than in an error correcting code adapted to do the same job. This project i=

33ﬂ aimed at producing a further orders—of-magnitude improvement in the theory of p/s/r

Ml processes. This carries over into a comparable improvement in implementing them.

o N - — e
~ Anticipated Benefits /Potential Commercial Applications of the Research or Development

{{;f The availability of best-possible p/s/r processes to solve the red noise problem will
A make it cheap dnd easy to design fault-tolerant or fail-safe communications systems at all
;ffi levels of complexity, from the microscopic to the global. The ability to overcome the

';3* unpredictable permanent failure of a certain specified proportion of the channels of

'\ - commnication in a system may have major consequences in chip layout, design of wiring

xji: within military platforms, commercial vehicles, telecommunications networks, and global C’1
:::. structures., The speed and simplicity of the implementation of p/s/r processes gives

4::_: promise of widespread cheap channel-failure insurance in gilgablt per second communications.
- Ca ;

——— e m e o m

%

“%

1;'{ PR e

;’

ATy
XXX

)
[4

I SR R
L S

P P N O o O et
@, Tl e, S W LA S 4 P AP S S T AL o R S it S . ) R LR IR Sy e T
0 0 WP PN, Y AT I LI 'L'g_. PRI PRI ) -‘115'45 aya ‘_..'_n AL !Ag...".l.‘.‘ h-.'_..'.“.'_‘. el "_-‘F.-j";}':-*lﬁ\_‘:\‘;\;“\'.;'{-“‘ L LR S -'h.-‘l':\,

r




)
.

« - -
w

« a ‘,‘ 4,
. . ‘v i
N l.’l s
LA A ]

1]

. -
A

NPl " N
[t T}
.

. 'Y‘.l‘
oy

.
. N
et

P
TR

s
<
?
gl

AR
.‘-'t‘-;-‘* .

Yz
WI

e,
PP AP

e

i
A ""‘.
o',

[ S

v =)

(AL
Py de 0

"‘

£

»

*
XA

(N
M A A

[/
N

L)
't

.
.

3. Identification aund significance of the problem/opportunity.

This propusal deals with research and development work on the red noise problem

[AS82].% 1t is one facet of the message pap |BR81; AN83). It is associated with the
difficulty experienced by two or more centers in communication with one another when a
catastrophic long-lasting failure of some of the communication channels linking them
acaurs,

More specitically, the red noise problem concerns a sending node and a receiving
node linked by several parallel channels over which information is moving in digital
form. The problem is this. Suppose you arec prepared to accept the failure of n-k
out of the n channels which are initially functioning. How do you encodc the
information at the sending node so that all of it gets through as long as any k
channels remain operative? How do you decode this information at the recciving node?
Ways of doing this are called pool/split/restitute processes.

Examples of systems faced with the red noise problem are numerous. A few of then
are:

I'. Withia a single vehicle or platform -- such as a missile, an aircraft, a
ship, a tank or a spacecraft —- there might be eight separate wires or fibers
carrying information from an area containing power supplies, engines, control
devices and weapons to an area containing human or electronic controllers.

It is imperative that the controllers continue to recelve all of the highest
priority types of information even though three wires (nobody knows in
advance which three) or fibers are cut by accident or trauma. This
guaranteed 5 out of 8 reliability may bave to be cheap in the sense that it
must be provided by tiny inexpensive circuitry;

I. At the global level or the theater level, consider communicatiouns between
commanders and subordinates, or between separate command centers (whether
these are vehicles or cities or redoubts or satellites is irrelevant
mathematically) connected by ten communications channels. Several of thesce
channels might be optical fibers, several might be microwave relay tower
chains, and a few might be satellite relay links. In the event of emcrgency
it might be imperative for all high level communications to get througi:
continuously after six of these ten channels fail, even when the sender does
not know which four of his outgoing channels are successfully carrying their
information to the intended receiver. It might be imperative to provide this
suaranteed 4 out of 10 reliability to communications systems working at very
high bit rates;

ITI. On the microscopic scale, VLSI and VHSIC are forciag more active eclements and
more pathwavs onto a chip. It is {ncreasingly important to assure the safe
arrival of every bit at the proper place in timely fashion even though
certain cirvreniv elements fati. This must be done in an extremely simple wiv
s0 as not to gobble up too much of the chip just for this assurance of
reliability. Perhaps it would he desirable to use an 8 out of 1C p/s/r
process to move o l6-blt word from memory along ten 2-hit channels so that
the whole word gets through despite the fatlure of any two of those ten
channels.

IV. The word "chanuel” should not be allowed to obscure the abstract
possibilities. Separate packets in a local area network can be treated as
separate channels since each packet can be 500, 1000, 2000 or some such laryc
number [ST83] of bits, The bits in a single packet get through all togetter

*Footnote: All entries in square brackets refer to the bibliographic citations list

beyinning on page 17. ‘




B

) f
a 2 0

e %l
Yo tete 04

bY

DA

o
YhHaa N

A4
Ny

7/ .;r"". .f‘.f. [y

':"'\'ﬂ AN -

[y
a,

Lasy

s m"'J".v.'-.“'w

I35

or not at ali, according as the packet reaches its destination, or cise is
destroyed in a collision or otherwise poes astray (BL33a, p. 5; PO8Z,
76-101)1. 1t cotlisions and aisroutings arve present, hut rare, a 63 cut of 6%
p/s/r process applied to successive batchies of 63 packets from a given sender
to a single receiver might provide cheap insurance at a bandwidth cxpansion
of 1/64 = 1.5%.

ielie

Obvinusly, comparabhle examples could be produced in many other contexts. But
abstractly they all point up the same need. It is important to find cxtremely simple
encode/decode schemes to provide cheap ways of assuring very high bit rate solutions
to the problem of getting all the important information from sender to recciver
whatever channels remain -- in the absence of prior (or even concurrent) krowledge of
which channels are the lucky survivors -- as long as there are enoupgh channels still
operative to come up to the initial specifications.

This might sound reminiscent of the use of error correcting codes to correct
burst errors, and in a way it is. However, during the two years since the red noise
problem was recognized [AS82] as important in its own right, tailor-made solutions
have been advanced which are much cheaper (i1lgorithmically, but this entails a
comparable dollar saving in implementation) than, and much faster than, the usc of
standard error correcting code techniques [BL83a, pp. 367-389; MC77, pp. 1981-186,
212-213; BEb8, pp. 393-394; VI79, pp. 227-300] to solve it.

A moment's reflection shows why this might be so. Error correcting codes are
designed to deal with errors occuring anywhere in the transmitted data stream (as loag
as these errors are not too numerous) [VI79, p. 34]. These errors can be very
irregularly spaced. in a mathematical sense which should become clearer below, red
noise errors can be viewed as occurring with a definite periodicity in the received
bit stream. Such a well behaved type of error, of course, constitutes a subproblem uf
the general error correction problems So it seems plausible (and turns out actuzlly
to be the case) that the solution might be conceptually simple, as well as easy to
implement in a cheap fast way. The recent Iiterature [AS82] and some as yec¢
unpublished work, bears this out. But in 1983 a further remarkable simplification arn.l
speedup of both the encoding and decoding processes used to solve the red noise
problem has been suggested by current research. Several important instances ot his
further orders-of -magnitude improvement have been discovered and verified as th:.
result of a powerful heuristic principle. The research on this project will attempt
to turn this heuristic rrinciple into a rigorous tool for producing this
orders-of -magnitude improvement of both the speed and the cost of the
encoding/decoding schemes for combatting red nolse in many or all cases of the
problem. 1t aims to produce a complete taxonomy of best possible (or, morec properiy
speaking, almost best possible) solutions of the red noise problem. Time permitting,
it will make a preliminary abstract analysis of how to design electronic
implementation of these coding/decoding processes using cheap of f-the-shelf components
to attain bit rates well above a megabit per second.

4. Background, technical approach and anticipated benefits.

4a, Background. An understanding of the red noise problem and the ohbiects vhich
solve 1c,'name1y pvol/split/restitute processes, is best acquired by looking at the
history of the last five years. In a 1978 NSF proposal, Blakley invented a new
cryptographic obfect, the threshold scheme (He called it a key safeguarding schene,
but Dennfag's well known cryptography and data security textbook [DE82] has mad
threshold scheme . he standard terminology ). His paper describing the notlon, and
piving the first example wias presented at NCC '79 and published [BL/9) in the
proceedings of that meeting.,

A k out of n thresheld scheme is a mathemitical way of utilizing a source o
random bhits to take an important plece of digital information, called a substance

TR e S A R




e 0.‘.‘ .

P

.

Sy a9 8y Sy Ry
o el

a“ s

""-4

3
[y

R

“
- AR

Py
»

»
AR
.

Pl eS
I

vy

l‘l *'

L ] )
‘ I"-‘ " ‘: S %

“

“y l'l
“c"l“-' ""

oY
AR

»
.

A A N

AR
A

(there isn't much harm in thinking of a substance as just being a plaiatext nessage)
and produce n  output picces of information called shadows of the original
substance. A shadow can, without too much inaccuracy, be thought of as being part of
a1 ciphertext message., Every shadow is about the same size as the substance and,
collectively, the shadows securely carry the full import of the gubstance in the
following sense. There is, on the one hand, a trivial algorithm which can renroduca
the substance 1f any k of the n shdows are inputted to it. But, on the other
hand, 1t is impossible to gain any inklinyg of the value of the substance on the basic
ot knowledye of only k-1 or fewer of the shadows. The justification of this latter
statement is somewhat technical. Nevertheless the basic idea can be expressed tairly
briefly in terms of what Konheim [KO81, p. 31} calls the Bayesian opponent. Just as
it is possible to prove !BL8la] the one-time pad [DI79 pp. 399-400, DES2 pp. 86-87]
perfectly sccure in the Shannen [SH49] sense, so it is possible to prove that a Kk
out of n  threshold scheme is (Shannon) perfectly secure up to threshold k. This
means that the Bayesian opponent cannct modify a (perhaps shrewd) initial guess
reparding the substauce on the basis of knowledge of only k-1 shadows. Somewiiat
mrre formally:

A posteriori probability that the substance has a value equal to § (given that
the objects h(1l), h(2), ..., h(k-1) are known to be shadows of that subst ince)
= A priori probability that the substance has a value equal to S.

To be more ccncrete, suppose there is a roll ol magnetic tape (the substance)
which contains the full i: . »ntory of payloads, locations aud targets of all misciles
belonginy to A on day . Somebody might think this information important enouyh to
mrit protection bv a 4 out of 9 threshold scheme. This will involve use of a trivia
alvorithm which takes this original roll of tape, together with 4 tape rolls worth of
random bits, and produces 9 rolls of may tape (the 9 shadows of the oriyinal
substance) as outputs,  Now an opponent of A let us call 1t R, might quite
correctly suspect at the outset that several of these missiles are tarpeted on some
important spot, call it M, But if R «can only obtain 3 of the (shadow) rolls ofi '
may tape it cannot shed any new light on this initial conjecture. It started out with
a yood bet that its conjecture is correct. It winds up with exactly the same odds.

If R can et 4 of the 9 rolls, of course, the game is over. It has crossed the
threshold of iaformition and can reconstruct the entire original roll of mip tape. S
it knows everything A does.

Shami r, by the way, introduced the threshold terminology in a paper [SH79) which
independent ly invented the idea of threshold scheme a few months after [BL7Y], and
Fave a better example of how to implement the notion. After the Blakley [BL7Y; and
Shamiv [31479] papers appesred, several people interested in information theory anl
computer scionce took up the topic. Asmuth and Bloom [AS8!] produced 1 huge famiiv o
threshold schemes, of which Shamir's was a special rase. They also gave tie oniy way
known to date tor “"spoofproofing™ a threshold scheme, a notion we won't con-iden
further here.  Sut they paid a price for this extra teature, a small departure frvun
shannon perfect securitv.  Then Bloom [BLBIL] genceralized the one-time pad (reiily the
Joaut of 2 ocase of g thresbold scheme, rather than o trae [Be805 DERZ2, po 152
crvptosvstem) so o as to produce essentially the tastest possible threshold schoeme, b
also noted that it 16 possible to reduce message expansion in a threshold scheme, ot
only at the cost of reducing security.

Blakley [BL79}, Shamir [SH79), Asmuth and Bloom [ASB1], and Bloom [Bi81bh]
independently discovered that any k out of n  threshold scheme which made use o g
finite field {JAb4, pp. 58~62; PL82, pp. 44-58; Bi&3a, pp. 65-92] requircd thot the
field econtain at least n  elements. Bloom gave a persuasive argument [BLEIb) to the
effect that this was necessary tn order to attain Shannon perfect security. Davida,
DeMillo and Lipton [DASO] prodiced ancther threshold scheme. Hellman, in company with
his students Karnin and Green [KABT], moduced sehermes without sharp thresholds and




8 N
]
L N ]

..
- .'I o]

»
L P
IR B ]

KA SRR

A

yn e

™ .\;.‘J\J A

PN

4, ‘; Ay

..

)
.

- ".,“'A‘l'l {A '

A WP

. e
e W

SISO RS P A

AH

showed that adding certain desirable features to threshold schemes necessarily impairs
Shannon perfect security, thus explaining what Asmuth and Bluom [AS81] had observed
regarding spoorproofing., McEliece and Sarwate [MC31] produced yet another thresnold
scheme, and drew the theories of threshold schencs and ot ¢rror correcting codes into
a single compass by exhibiting an explicit relationship between Shuanmir's [5H7Y9] scheme
and Reed-Solomon codes [KE6U; BE74, pp. 70-71i].

Two aspects of threshold schemes worth noting explicitly are:

L. Threshold schemes are related to error correcting codes. But the "decode®™ i
a threshold scheme is trivial, whereas decode can be a formidable [BE78;
NT81] problem, even an NP-complete [GA73] problem, in an error correcting
code.

[T, As of 1982, most k out of n threshold schemes mide use of finite fields
(Galois fields) [JA64, pp. 58-62; MA77, pp. 93-124; PET2, pp. 144-169]. All
[AS83; BL79; BL81b; SH79] such schemes required a field with at least n
elements,

last year, Asmuth and Blakley [AS82] explicitly enunciated the red noise problem
and solved it by means of a p/s/r process based on the Chinese Remainder Theorcm.
This p/s/r process could be viewed as being just "an Asmith-Bloom threshold schem:
completely lacking in cryptographic security”. TIts great advantage was itg
flexibility in dealing with information sources with very different bit rates. Years
ago Stone {ST63] had used much the same approach to solve a problem in the theory of
error correcting codes.

4h. Technical approach. With this background it is now possible to give the
general framework of the present research. The principal investigator, bBub Elakley,
has already takeu a Bloom threshold scheme and produced from it the correspoundioy
p/s/t process. It will be called, simply, a Bloom p/s/r process below. le has
simulated its operation on a high speed digital computer.

The k out of n case of this Bloom p/s/r process works as follows. Suppose

that b is a whole number (positive integer [MA67, p. 47])) so big that Zb > n. Then
any ancestral list (a(l), a(2), «.., a(k)) of k words [MA67, p. 43] (each of whic
is a b-bit word) is turned into a descendant list (d(1), d(2), ..., d(n))} of n
b-bit words. This is the encode (i.e. the pool/split) process. It is done in such a
way that any k-word sublist [MA67, p. 228] (d((1)), dG(2)), voe, d(jk)) of the
descendant list d(1), d(2), «ee, d(n)) contains enough information to reclaim the
ancestral list (a(l), a(2), ..., a(k)) in its entirety. This is done by a decode
(L.e. restitute) process which uses no more than trivial linear algebra over the

finite field GF(Zb). By comparison with threshold schemes and error correcting codes
this Bloom-style p/s/r process has the following features.

I. Tts k out of n case effects only (n/k)-fold message expansion. Thus its
8 out of 10 case effects a 25% message expansion (from | unit to 10/8 = 1,25
units). This expansion is quite obviously best possible for a scheme which
can recover eight b-bit ancestral words from any eight of ten b-bit
descendant words.

[1. The Bloom p/s/r is, to all intents and purposes, the p/s/r process which uses
the smallest possible number of arfthmetic operations in the fintte ficid i
utilizes., Tts "encode” (f.e. pool/split) and "decode™ (i.e. restitute: o
processes arce both trivial, exhiblting mach less compatational complexity
than the decodes in any error correcting code which might be adapted to Jdo
the same job. ‘The reason for this 1s that the error correcting code exhibits
overkill because it is a general purpose tool., It is fnvented to dea: with
many more types [HARG, p. 24] of "errors” <han one encounters wvhen dealiiy

ot A T T T o e R A
MO STRCE RS _$.~. "y ‘6\..- S T

i E catatatat

P

tndeaingdie. L

L W § ey




L R T :-:-ﬂ.ﬂT

ﬁ.
RS
L

Y

QL with red noise, This p/s/r process is a special-purpose tovol for dealing
:*: with red noise.

o

LGN . . . -

DAY T'1l. P/s/r processes are not cryptographic objects in any sense of the word., They
&N do not involve nny type of cryptosecurity. They do nothing more than guard

avainst loss of signal, and therefore fall within the general area uf error

X -

o~ control.

o

:\ﬂ 4c. Anticipated benefits. The linear algebra of larpe finite fields can take
r: many michine cyclies per multiply or divide. It can also, in the worst circumst. nces,
- make considerable demands on memory. During 1983 a heuristic principle huas com- tg

light which massively reduces this aspect of the computation in numerous cases. Yrom
Bloom p/s/r processes it produces hypertfast p/s/r processes which encode and decode
bytes or larger words in less than ten machine cycles (on highly parallel processors)
tor almost all practical choices of k and n. This heuristic suggests the
possibility of comparable reductions in many other cases, Consider an example which
at first blush seems extreme. In April, 1983 we have reduced the memory recuircments
for one implementation of a 60 out of 62 scheme by orders of magnitude. As regpards
the parameters, 60 out of 62, one cannot readily conceive of so many fibers joining
two nodes. But, returning to the packet-switching example above, it is easy t.
imigine one or two packets out of sixty going astray. Also, recently developed
coutinuously reconfiguring multimicroprocessor control systems [EL83} appear to have
many virtual channels.

A 7

At any rate it appears that this heuristic principle -- already successful in
making a k out of k+l or a k out of k+2 Bloom p/s/r process capable of
decoding in something like 3k machine cycles on an ordinary microprocessor, and in
about log(k)+2 cycles on a parallel processor —— will lead to ways to reduce the run
time of hardware implementation of all k out of n schemes by comparable amounts.
This should make them able to run on gate arrays, programmable logic arrays or other
standard cell [NE83, pp. 470-471] hardware, or even other cheap off-the—shelf devices,
at rates well above the megabit per second range.

The ability to code and decode at such bit rates becomes increasingly desirable
with the emergence of tiny cheap cleaved coupled-cavity lasers [TH83]. Thev nake it
possible to use a 73 mile fiber without a repecater [AB83] to communicate at 420

megabits per secoud with an error rate of 10—9 [TH83; LI83, p. 363}. It scems likely
{GOB3] that terabit per second commnication systems are in the of fing new that 30
femtosecond light pulses are available., Theoretically, further orders-ot -masnitude
improvements in processing gains because of exploitation of photonic efficicncy of
detectors [GAB], p. 526] as well as by weans of preservation of polarization [RAL3!
are pessible even after that. Until optical computers are developed we will need
code/decode schemes of minuscule computational complexity to deal with such bit rates,

The hyperfast p/s/r processes have a further advantage, in addition tu low
computational complexity (which amounts to high-speed low-cost implementability on
simple hardware). They can also be implemented in a highiy parallel way, <o that
separate devices can do concurrent decoding for separate channels, and each dovice can
do many operations in parallel,

1t is now clear how to move digital information with minfmum redundancy .and
maximum specd (an unusual plus, best possible in two ways) at s modest dollar cost
(which does, however, rise with desired data throughput rate) so as to overcome a
predetermined level of tireat of channel tallure.

Presumably the existence of such a capability could affect the desipgn of
everything from chips to the fiber "wiring” of missiles, ships, tanks, planes and the




»
1

L A A S S S i

» '."‘.”‘
|

5

AB

.

AP
.

s design of C1 systems in the future. Tt certainly he' s implement the nilitary
}$ digital switching systems criteria [RO83, p. 19] of survivability, endurability,
Sq distributed communications, respounsiveness, efficient spectrum utilization, and cust
: effectiveness. Thus this proposal arguably addresses 6 of the 9 military operaticnal
. system requirements detailed in [RO83, p. 19].
8 4d. Foundations for Phase II. By the end of Phase I all the alporitlinic
;. principles needed to encode and decode in a hyperfast p/s/r should be known four everv
-~ n and k. Basic principles of design for hardware implementation of these alyorithus
}}} should also be available, The design principle will lead one way if minimum cost is
e the ultimate goal, another way (high parallelism and custom design) if ultrahigh specd
is the overriding aim, and still a third way if a single: unit is to be used for
0L various different values of k and n.
J?i But in any case the abstract basis on which to proceed to build bench systems,
ke and then prototypes of field systems, will be firmly in place. The actual design and
L testing program can begin as soon as Phase [ is complete.
A 5. Phase T technical objectives.
e
j::: In Phase I we hope to exploit the heuristic described in Section 6 below to use
\:- the Bloom approach to suggest a new collection of p/s/r processes, the hyperfast p/s/r
3N processes., The k out of n case can be expected to restitute (i.e. decode) 15 bits
e of the information contained in one input channel using fewer than 3k machine cycles
! on an existing 16-bit microprocessor if n - k 1is smaller than 16. The memory

requirement for table lookup implementation will be well under 1000 bytes.

. The various channels can be recovered concurrently on separate machines if so
X desired. Since the decode process is simply a linear combination & c(i)d(i) of
- received words d(1),...,d(k) with fixed coefficients c(l),...,c(k) it is even
v possible to design a vector microprocessor machine which can move 2k words
i concurrently, then perform k products by table lookup concurrently, then add (which

is just XOR in GF(Zb), and thus has no carry propagation) k summands in a sinzle
operation., The vector fetch and the vector dot product ! ¢(i)d(i) can, in theory,

WA
}:: be done in 1 cycle each., The XOR of k summands can be done in 1log (k) cycles or
p-. fewer (the log being to base 2). It is even possible to use VLSI to produce a cheap
ultraparallel implementation in terms of hardwired functions with more than two {nputy
Lﬁ: if n 1is not too large.
e Examples of times to restitute 15 bits on one channel in implementing the k out
i:% of n rase of such a hyperfast p/s/r process appear to be:
P k n number of cycles number of cycles number of cycles
;‘; (ordinary (k-vector (ultraparallel
- mi croprocessor wl croprocessor implementatiocn)
:ij implementation) implementation)
e 1 1o 3 3 4
o s 2 10 6 3 4
abod 4 10 12 4 4
oy R 10 24 5 4
N . 16 30 48 6 h
'y A2 40 96 7 ]
o Y 70 192 8 4
P 128 140 184 9 /s
256 o0 768 10 4
:": Y12 W20 1536 11
:;: 1 000 [ERRRY 30172 12 4
25%)
‘
.Y

X _'A'I..'-_.' S '..;".:-.._-.-::.,.'-_.' ot -‘._-_.-:J. -_..;'--:'..:q.\-_.\‘_.\-'._:_._:.. -_..:'-.\'_."_.~:...;‘..:...;_._;_1



-

B A A S -4

LTa e84
‘ [y
.

R

‘I "l .l " ‘.l
. 4' . !‘ l, 5 2

s

L

X

sy

RN X 'v‘ .

L 4

>
.

-

LR R
LI PRI

.‘ u'_ )

Jolar e

r)
. &

o s
Ol T W'}

" TEND

The expected form ot the encode alporithm is so similar Lo the ¢xpected torm of
the decode that we will not discuss it here. See Section 6 below.

The first technical objective of Phase |, then, is production of the encode
alyorithm and the decode alyorithm for the Ik out of n case of a hyperfast p/s/r
process., Eiach of these is in the form of a bunch of serarate and independent dot

. -, . RPN L
products in k or n dimensional vectHr spaces over GF(27) for some positive
integer b near iog(k).

The second technical objective is a vortfolio of abstract design prianciples for
irplementation of such a p/s/r process. YLYK Ltd., plans to sketch thie ahstract
principles behind implenenting such a k out of n p/s/r process by means of an
existing 16-bit microprocessor, an existing programmable logic array or gate arrav,
and a hypothetical vector microprocessor with a 16-bit word size, and vectors of up to
1924 words.

[t is to be emphasized that the plan for Phase I {s to deliver the encode and
decode algorithms in definitive and final form. But YLYK Ltd. will only sketch, as
time allows, the basic abstract features of hardware implementation. YLYK Ltd. wilil
not produce hardware, or even the final design of hardware, in thase 1.

6. Phase I work plan.

It is no longer possible to avoild technicalities. Before we describe the
heuristic device for producing these cases of hyperfast p/s/r processes and,
thereafter, finding the general hyperfast p/s/r process it is necessary to look more
deeply into the geometry of Bloom p/s/r processes. The collection

VGF) = ((Lymym2,mo, ety € F: moe F)

is in general position [YA68, p. 1643 MA77, p. 326] in the k-dimensional vector space

Fk over any field F. 1In other words, suppose that k lies between 2 and the
cardinality [MAR7, p. 93] of F. Then every k by k matrix of the form

!" 1 a(1) m(1)2 m(l)k’l—]
i : m(2) (2 ... w7l
l.,. ] m(k) n(k )2 m(k)k-l J

(where the m(i) are pairwise distinct) 1s nonsingular because it 13 a Vandera.iude
matrix [HO71, p. 125/, The formal definition, then, is that a set of vectors is iu
general position in a %-dimensional vector space W 1if every one of its k-member
subsets is a basis for the space W, Moyre important than what we said about V(k,!),

but far less trivial, is the fact that
VE(K,F) = V(K,F) 1 {(0,0,000,0,1,0,00.,00} = V(k,F) it {c]

(where the 1| 1s in any position) is also fn general position. This requires use of
the theory of symmtric polynomials [RE6T7, pp. 457-458]. So getting just one more
vector into the set takes a lot more doinyg. But so far the extra effort sccms
essentlal to what we prepose to do. The way a Bloom k ont of n p/s/r process
works is to take a fairly large set of vectors (at least n  of them) in genoral

position in the k dimrusional vector space (}F(q)k over the fleld GF(q) ot 4

.
e A 4 ArSmaA A A 2 A 4 S Mmama A a S A S A S\ANEa

JUD WY SN SO W T W

enda il e b s bt A b o o

A g e g .




A et o et AT AN e e i D e it A R ORGSR C

A 10

elements. There's no harm in taking V*(k, GF(q)) if q > n. Suppese that q 1s o

sower of 2, i.e. that q = 2b,  Suppose, also, that the p/s/r process is meant to
work by accepting one b-bit word after anothier from each of k 1input channels
(ancestral channels) at the source. It should then send one b-bit word after another
down each of n descendant channels to the receiver. Each one of these descendant

channels is identified with a vector belonging to V*(k, GF(Zb)). Once some channels
fail, and a decoding scheme is ecmployed on k of the channels which still work, it
acts the same way on every successive b bits in each channel. So it suffices to
look at a single time slice through the system. In such a slice encoding is done by

defining a linear map [HO7l, p. 67] L : GF(Zb)k * GF(Zb) by setting
L(w(i)) = the 1th b-bit ancestral message

*

for the vectors w(l), w(2), ..., w(k), in some ordering of V (k, GF(Zb)), which
corresponds to the k ancestral inputs. These are assumed to be sent unaltered down
the first k descendant channels. In addition to that, the sender solves for any

other member y  cof V*(k, GF(Zb)) in the form
y = c(y,Dw(l) + ... + c(y,k)w(k)

as a linear combination of the w(i) with coefficients c¢(y,i) drawn from GF(Zb).
Lown the channe’ corresponding to y 1s sent the message

Ly = L(c(y,Dw(1) + ... + c(y,k)w(k)) = c(y,DLw(1) + ... + c(y,k)Iw(<).

Addition is GF(Zb) addition (i.e. exclusive or, XOR, of b-bit words) and
multiplication is GF(Zb) multiplication, since both c¢(y,1) and Lw(i) are members

of GF(Zh). All the linear algebra is a precomputation, of course. Hence the c(y,i)
are available before encoding starts. Decoding involves a once-for-all solution
(another precomputation) of linear equations to find the {w(1),w(2),...,w(k)} 1in
terms of a collection of any k of the y's. This gives the Iw(i)'s (the ancestral
b-bit messages) in terms of the Ly's (the descendant b-bit messages). The whole

*
thing works because any k members of V (k, GF(Zb)) are a basis for the vector
space CF(Zb)k, i.e. because of the general position assumption.

This souuds abstract, for the usual reason. It was written to fit into a small
compass, without too many numbers and subscripts littering the printed page. But ail
the objects are explicitly given. For example, a 3 out of 7 p/s/r process coald

make use of the field GF(8), the 3-dimensional vector space GF(8)3, and the
9-member set

Vi3, GF(8)) = ((1,mm?): m e GE(8)} ! {e},

where € is either (0,1,0) or (0,0,1). For a Bloom p/s/r process it doesn't
matter which. For our purposes, building hyperfast p/s/r processes, the choice of -«
scems to be crucially important. It appears to require an amount of trial and error
tedions for humans, but trivial oa a computer.

¢ A k out of n Bloom threshold scheme would require use of GF(Zt) where
2 Z n. Thus a 990 out of 1000 scheme would require GF(1024) multiplications. Iu
table lookup mode this would require a table of over one million 10-bit words.




[

All

& . ‘ [
i: Obviously one would trade time off against memory. But then each multiplication would )
i; involve dozens of machine cycles, and each division could require hundreds. The R
- simple heuristic we describe below says that the threshold scheme analogy is {
< hopelessly pessimistic. A 990 out of 1000 hyperfast p/s/r process should require oulv -
g CP(16) muitiplications. This uses only a table of 256 four-bit words. i
- The heuristic for producing hyperfast k out of 2b+l p/s/r processes which use ]
b linear alyebra over extrernely small fields of characteristic two [JA64, p. 61; PLB2Z, :
:t p. 46; BL83a, p. 80] goes as follows. Do not use just any collection of 2b+1 ;

% *
ﬁ vectors in general position over GF(Zb)k. Use V (k, GF(Zb)), where the vector :
€ =(0,0,...,0,1,0,...,0) 1is chosen by trial and error from among the k possible g
;: unit coordinate vectors [N069, pp. 473-474) in GF(Zb)k to satisfy the following :
- condition. R
:; Heuristic: A k out of k+j hyperfast p/s/r process can be formed, in the Bloor .

*
v manner, over GF(Zb) if j < Zb. Form a Bloom p/s/r process using V (k, GF(Zb))
Y for each possible choice of ¢ = (0,0,...,0,1,0,...,0) and examine the corresponding

1

"o coefficients c¢(y,i). There is a minimal €, in the sense that all the c(y,i) for :
“‘ .
%4 this € belong to a smallest subfield of GF(2"), where 2" > k+j. This minimal ¢ S
-- — -.‘
- may have the property that all c(y,i) belong to GF(Ze), where j < 28, and where .
; e 1is the smallest integer exponent for which this is true.

. In the following paragraphs we will give some motivation for the heuristic. Here

: is a summary of the known cases of a hyperfast p/s/r process it has suggested,

e directly or indirectly:

:: 4 out of 5 over GF(2), followed by general k out of k+l over GF(2);
( 3 out of 6 over GF(4), and 4 out of 6 over GF(4);

- 7 out of 14 over GF(8).

: This last was made possible, with limited computer power, by adroit use of Zech's

o logs [MA, p. 91-92). It might lead to a more general k out of k+7 hyperfast p/s/r

" process over GF(8) soon. Conceivably the cases B8 out of 14, 9 out of 14, and 10

. out of 14 can also be produced over GF(8) and made to give rise toc more genecral
cases involving k out of k+7, k out of k+6, k out of k+5 and k out of w+4

f over GF(8). But to get such things as a k out of k+8 p/s/r process using only

- the arithmetic of GF(16) will likely require the effort and the computer power o1 an
.l IBM PC programmed in assembly language running for hours.

‘ﬂ We recall that GF(2) = 2/(2) 1s iBL83a, pp. 69,75] the field of two elemcnuts,
-~ i.e. the integers modulo 2, i.e. the set {0,1} under the addition and multiplication
- tables

- +]0 1 *|l o 1

” 0]0 1 0lo o

e 1]l1 0 110 1 .

= The following encode and decode rules obviously work for a 4 out of 5 p/s/r,

:} where all arithmetic is done in GF(2). To encode (i.e. to pool/split) an ancestral
~ list (a(l), a(2), a(3), a(4)) of four I-bit words, let

‘.l

ﬁj d(1) = a(l); d(2) = a(2); d(3) = a(3); d(4) = a(4);

4 d(5) = a(l) + a(2) + a(3) + a(4).

To decode 1f d(5) 1is missing set:
a(l) =d(1); a(2) = d(2); a(3) = d(3); a(4) = d(4).

\v.-.. o ‘\. DR .({,‘.._". "...'w. SRR
A S 4 N N alR



If d(1) 1is missing set;
a(l) = d(2) + d(3) + d(4) + d(5); a(2) = d(2); a(3) = d(3); a4y = d(4).

If d(2) or d(3) or d(4) is missing the obvious analog of the case immediately above
decodes successfully., This can be umcre readily seen in terms of matrices over [HOTL,
p. 6] the field GF(2)

LT — el —— ——d i —
S a(l) a1 1000 0111 i 1000605
a(2) d(2) 0100 01000 10111
A= a(3) |, =] a3 |, E={O0O010], M1)s|loo0otoo|, M2l={00100],
a(4) d(a) 0001 00010 00010
d(5) 1111 ] .,
-— —
10000 10000 10000—]
01000 01000 01000
M(3] =] 11011 {, Mi4] =1 001001}, M5 =]00100
" 00010 11101 00010

Then encoding is the rule D = EA. And decoding is the rule A = M[1]D when (i)
is missing. This works because
M{1]D = M[1](EA) = (M[1]E)A = IA = A

when the ith entry of D 1is absent. This is because every M{1] 1s a left inverse
{NO69, p. 11] of the nonsquare matrix E, and because M[1]D 1is independent of d({)
(since the ith column of M[i] contains only zeros). Clearly [N069, pp. 11-17,
132-135] E cannot have a right inverse [N0O69, p. 11].

Instead of a 4 out of 5 p/s/r we could as easily have defined a k out of
k+l p/s/r process using only the arithmetic of GF(2). This is quite unlike what
happens when threshold schemes are involved. To implement a k out of k+!
threshold scheme you must use the arittmetic of the much larger field GF(Q), where
Q > k+l.

The c¢xtreme simplicity of this k out of k+l p/s/r process (its use of only
GF(2) arithmetic) is not a fluke. Moving up the scale, it is possible to implement a
k out of k+3 hyperfast p/s/r process using only the arithmetic of GF(4). This is,
one recalls [MA77, p. 101; BL83a, p. 75], the set {0,1,r,s} wunder the addition and
miltiplication tables

+ 10 1 r s * |1 0 1
0t 0 l r s 010 0 0 O
e 11 o0 s 1{o0 1 r s
. r{r s 0O 1 rl o0 r s 1
: s s r 1 n . 8 0 s 1 r
;33 It is commonplace to represent these four "numbers” as 2-bit words:
> 0 = (0,0); = (0,1); ro=(1,0); s = (1,1).
'kf Evidently, then, + 15 just the 2-bit word exclusive or operation, XOR. And * can

be implemented by means of o table with sixteen 2-bit entries.

= For brevity we merely give the matrix form of a 3 out of 6 hyperfast p/s/
¥ process 1In tcrms of matrices over [HO71, p. 6] the field CF(4).

---------- '~.' . - - ..._ . .
.Au m}::hhﬁ.-_nutA .- g _LAA‘_.- B % .!}




b Al3

et e e —
d(1) 100 —_
a(l) d(2?) 010 000111 001 0s r-]
A=la(2){, Dp-'da(3|, E=l00 i}, M(1,2,3]={0 001 s r|, M[1,2,4] = | 001011,
a(3) d{4) 111 000G 1 vs 001000 ‘
d(s) trs —_
d(6) 1 sr
00sr0s 00 sr 0 01 0J9rs
M[1,2,5] = | 0Drs Os |, M{1,2,6] = | 00srr0Oj, MI1,3,4] =1 010606061,
00!Y0O0OO 001000 01 Cco 111l
- . - | L L
0 0sOr 0 Ors O O0sr 001
M[1,3,5] = 010000, M[1,3,6] = | O1 D000}, M{1,4,5) ={ 0106000},
0sOrOr O0r 0s s 0 001000
f— — P — peee —
Ors 010 011100 100000
M[1,4,6] =1 010000 ], M[1,5,6] = | 010000 |, M[2,3,4] = 1000+ s |,
0 1000 001000 1000s
100000 100000 10000
Mi2,3,5 = | s00r 01|, M[2,3,6] = r00s 10}, M2,4,5 ={rouvsoor],
r00s 0 I_J sDO0Or 10D 001000
100090 100000 100000
M[2,46,6! = | s 0oro0s 0|, M2,56] = 01100/, M{3,4,5] =1 019000,
o0 1000 001000 s r (000Osg
— -—-i ——— | bt —t
F Y00 o 100000 1 00000
Mi3,6,6] = 010000, MI3,56 =[0100001|, M4,56] =] 01 CO 0 .
rs 00y 0 | 11 0lo0o0 001l Yo

To encode, set D = EA. To decode, set A = M{w,x,y]D when d(w), di{x) and d(y)
are missing. This works bhocause

MIW,X,)')D = MIW,XJ’](EA) = (M[",X,y)E)A = JA = A

even though the wth, xth and yth entries (d(w), d{(x) and d(y)) of D are
unknown (the product M[w,x,vID 1s independent of them because the wth, xth and
yth colums of M{w,x,y] are zero). It Is easy to verify that, in the arithmetic of
GF(4), every one of the twenty matrices M|w,x,y] 1is a left inverse of E. Finally,
it 1s a stralghtforward matter to produce k out of k+3 generalizations of this
hyperfast p/s/r process, nsing only the arithmetic of GF(4).

The major part of the work plan 18 to write, to run, and to analyze the output
of, computer programs for using the heuristic principle to find the encode and decnde
algorithms for successively larger cases of hyperfast p/s/r processes. This will
involve a great deal of run time. Hence it will be necessary to obtain an IBM PC and




O ERACRANE A i niie i Sl S ndl S aa il ] R AT S AL L N NI L M E R R S~ D A S At - o= ) |

.,
l Il "l
.
A
\
)
\
.
.
.
.
.
.

5
S

Alad

e '.Qé ”
b

use it throughout the project. See Section 8 belww. First we propose to find the
form of general:

L
»

k out of k+4; k out of k+5; and k out of k+o

IR
? e
‘e

p/s/r processes using only GF(8) arithmtlic, then general

‘vlaﬂ.m et 0

k. out of k+7, cees k out ot k+l4

p/s/r processes using ouly CGF(16) arithmetic, thea general

s
ety et
. ]

PR
.

k out of k+l15, csay k out of k+30C

.
.
B

p/s/r processes using only GF(32) arithmetic, and sc on. These results, which
alreadv contain the larger part of the foreseeable practical use of cheap hyperfast
p/3/r processes, can be expected to lead to the form of the general k out of k+j

p/s/r process using only the arithmetic of GF(Zb), where j < Zb.

‘ ]
€« a2 ® 2" K ¥ .
2 % %W T )
LI )
‘111.114/._,..’\..4 .

3

Once this i3 done, the rest of the work plan is to do an abstract design of
hardware implementation of p/s/r processes. For packet switching [SL81] ard other
sequential-arrival-of -words type applications, low cost and minimum parallelism may be
the overriding design consideration. For other applications, perhaps involving
physically parallel channels transmitting concurrently, cost and use of of f-the-sheif
componrents may take a back seat to speed. In this case it may be necessary to provide
abstract designs of cncode and decode processes utillzing parallel processing, or even
the ultimite ultraparallel implementation so as to approach the four-machine-cycle
ideal of encoding and decoding speed mentioned in Section 5 above.

4

-

",

"“‘
i

e

t
4

.

) l

\..-. I'
R e
AL

e
LIS
.

e

The last part of the work plan, also an abstract design task, i3 to sacrifice
speed or economy or both so as to produce general purpose decoders. In other words we
want to classify the pairs ((k,n), (k*,n*)}) with the property that an encoder
(resp. decoder) for a k out of n p/s/r process will encode (resp. decode) for a
k* out of n* process as well.

AN

.
[

R NN

i}
.
.
W

Cases of this are known. It 1is easy to turn the implementation of a« 3 out of

6 hyperfast p/s/r process using only GF(4) arithmetic into the implementatiou of a
. 2 out of 4 hyperfast p/s/r process using only GF(4) arithmetic by “"tying some

o channels to ground”™, i.e., by sending only zeros over them (or having the receiver
pretend that only zeros are sent over them), We omlt details, which a reader can
easily work out. Obviously you pay a price in bandwidth. In this example a 3 megabit
per second throughput 1s reduced to 2 megablits per second. 1t is reasonable to
conjecture that a k out of n 1implementation can be trivially turned into a k*
out of wn* implementation this way Lf k* {k, n* < n, and n*-k* { n-k. It would
be desirable to verify this conjecture and, if possigle, extend it. The advantage of
having a few versatile boxes (general purpose communication tools) can sometimes

.
LN
e
[ ]

';;: outweigh the panoply of unique advantages peculiar to each of a large number of
If: dedicated boxes (precision single purpose tools) in a military context.
'Qii Actual hardware design is not part of Phase I. It will be left to Phase [I1.

R 7. Phase 1T statement of work,

The work will star*t with the production, and numerous runs, of a program to
implement the heuristic device described i{n Section 6 above. It is strongly indicat:c
by much evidence in the rases u =k, n =k+l, n = k+2, n =k+3, and n = k+7
that a properly chosen Bloom p/s/r glves rise to an appropriate hyperfast p/s/r for
any choice of k and n. The program will produce the list of matrices which embodv
this hyperfast k out of n case, for each cholce of k and n. By the end of tw.
months the first of these results (the cases 4 <k <7, n around 60) will be
available. Within the following month or two, the other cases most important to to
general solution of the problem of tiilding all hyperfast p/s/r processes should be

.
L)
(g

Ca
a e
.

L R AR AR A AR
o e

b " b
.
s %0t

v
ARG A

£l

L}
Ny

.
.o
e "o

AL
PrFELe
A

L]

19~

7
Jad
L )

e T s RS T e T TN T R T T s TN TGN
. . » - - - - T - - ~ . »
PR, P SR N N S S S T T L O W R R RS T SR S JL B




«

« a4
.

s fa 4

PAANIIVL - Rt

‘.

Y e
" l!' ." -.' l.

.

GG

v

A o
AR T

@

03 U
'#3}}&

')

-
= ]
ka .) *

N
ol

s s S/ S A i i < e SHin o i v ey i i el el

AlS

avallables  They may not be in the best rorm. (f aot, aa interactive matrix
nanipulation program will be produced to format them in the manner wmust cenducive to
reading orf the general structure of the matrices which embody a hyperfast p/s/r
process.  The last two monthe will be devoted to discovering, and then proving
correct, the form of the general hyperfast p/s/r process. Even if the general
solution is not {ound, most cases with any coanceivable practical importance will have
been setrtled,

The ahstract desiygn principles for implementation can proceed concurreitlv witn
tie dicovery process over the last 3 of the 6 months of the project. The reason tor
tisis is that the general torm of the solution is known. Both encode and decude are
dut products between vectors in an n dimeansional or a k dimensional vector space.
What is not yet conclusively demonstrated, though we gave a well motivated cunjoctinc
fn Section 6, is the size of the flelds underlying these vector spaces for a givea
choice of n and k. And the number of occurrences of each member of that field is
quite mysterfous. But, as these pleces fall into place casc by case, the abstract
desiuzn principies can evolve iteratively,

At the end of the sixth month YLYK Ltd. will deliver a report. The report will
contuin a catalog of k out of n cases of hyperfast p/s/r processes embodied :n
lists of matrices for various important values of k and n. If the work meets with
complete success it will in fact give the form of the list of matrices embodying the
general k out of n hyperfast p/s/r. Finally, it will describe the abstract desiyn
principles of implementing such p/s/r processes on currently available off-the-shelf
hardware, as well as on a hypothetical vector machine or even a hypothetical
ultraparallel processor.

&, Facilities/equipment.

So far the hyperfast k  out of k+l, 4 out of 6, 3 out ¢f 6, and 7
out of 14 coses of a p/s/r process have been produced with no more computer power
than a4 UF 421C, This 1is bucause the fields in question are quite smali. llence nc
watrix lareer than 14 by 14 1s needed to turn the heuristic principile described in
Seetion £ above into an infinlte collection of encode/decode rules. But in order to
2o bheyond this 1t will be necessary to at least double the size of the Galois field
in question., It will also be necessary to do linear algebra with witrices laryer . han
33 by 3. And by the time the general form of the encede/decode procedure tor &
out ot 1 processes emerges we will probably be dealing with something like a ¥ cut
of k4107 case. This will involve tields with more than 100 elements, and
(extrem:iy sparse) aantrices of size approximately 20,000 by 20,000 over such fields.,

The calentations irvolved will require a computer capable of supporting FORTKAL,
as well as being easily programmable in its own assembly language, and with sizable
memory. The 1BM Personal Computer is just about the smallest of the machines capable
of carrying out this proyram. But with 64K RAM, and assumlng adreit prosramming aad
use of disk memory, it will be possible to explore the consequences of the heuristic
principle mentioned in Section 6 above within the size ranges aforementioned. No
other special equipment will be required to complete the project.

The 2-rvom facilities avaliable to YLYK Ltd. at Ann Arbor are adequate to the
task at hand. They can accommodate the TBM PC and provide the principal investiyator
with a work areca and necessary library and dratting facilities. Other persounel can
be accommodated there, or else assigned duties to be performed on their own premiscs
in consnitant fashion.

9. Consultants,

¢harles Asmth (Ph.D., Mathematices, University of Chicagzo, 1976) did postdoctarnl
work at the ITnstitute tfor Advanced Study in Princeton, New Jersey. He taught in tl.

g ‘.',".1




LA N e e e TN Y T —r—— — L,
N e Ol ) e L e e R S e T e a~ e SR Ao S St SR A aie g LEAEARAENE fains o)

department of mathematics at Texas A&M berfore taking his present position as assistant
professar in the department of mathematics and computer science at Rutgers Uuiversity
(tewark ). He is author or coauthor of some ten papers in mathematics and fts
applications, especially information theory and cryptography. He will be a consultant
au tne proposed research, His combination of knowledge in electrical engincaring,
computer sclence and abstract algebra will be useful in going from the classification
ot hyperfast p/s/r processes to implementation.

G. R, Blakley (Ph.D. Mathematics, University of Maryland, 1660) did postdoctoral
work at Cornell and Harvard. He has bz2en on the mathematics department faculty of the
University of [llincis (Urbana), SUNY at Buffalo, and Texas A&M (where he was
department head for mauy years, and where he Is currently a professor). He is author
or coauthor of some 30 papers in mathematics and 1its applications, especially
iaformation theory and cryptography. He will be a consultant on the proposed
research. His expertise in linear algebra will be useful in finding a geuneral scheme
nnder which the anticipated abundance of hyperfast p/s/r processes can be classified.

Jobn Bloom (Ph.D., Mathematics, CalTech, 1977) taught at the department of
mathematics, Texas A&M University, before taking his present research and development
position at Chevron, La Habra, California. He is author or coauthor of some ten
papers and technical reports in mathematics and its applications, includiung
information theory. He will be a consultant on the propcsed research., His expertise
in algebraic number theorv and algebraic geometry will be especlally useful in the
very first phase, formulating the programs which implement che heuristic based un the
Bloom p/s/r processes and produce examples of hyperfast p/s/r processes for variocus
choices of k and n.

1U. Related work. Bibliographic citations list.

Bob Blakley served as a draftsman for the City of Bryan, Texas, in the sunmer of
1978, He is an expert scientific programmer, having been employed at varicus times
over the last three years in softwarc production and maintenance by research contracts
and grants in the Mathematics, Mechanical Engineering, Statistics, Chemlstry,
Blocherdstry and Biophysics departments of Texas A&M University, the Geophysical Fluid i
Dvaoami es Laboratory at Princeton University and the University of Michigan Computer v
Center, as well as for YLYK Ltd. of Ann Arbor, Michigan. He has had extensive ‘
experience in algebralc scientific software production, some of it in collaboration
with G. R. Blakley. He has produced sizable module [HE74) theoretic generalizations |
of linear algebralc programs for chemical applications. He has produced programs for
the avithietic of g-adic rings [MAB81] and the arithmetic of finite fields of
characteristic 2. He has implemented computer simulations of both the Asmuth-Elaklev
[AS82) p/s/r analog of the Asmuth-Bloom threshold scheme [AS83] and the Bloom-style
n/s/r analog c¢f the Bloom threshold scheme [BL8Ib]. He has a substantial academic
background in logic, computer science and natural languages. He 1s conversant with a
dozen computer languages, several of which are assembly languages.

C. A. Asmtn 1s one of the leading practitioners in the theory of threshoid
schemes [ASR3], p/s/r processes {AS82] and their applications [AS81]. He has a
practical famillarity with digital electronics extending back many years. lls gras
of abstract algebra and abstract harmonic analysis is highly sophisticated.

G. R. Blakley invented {BL79] threshold schemes, and 1s a major contributor

s e

;;} (BL8M; BL8la; BL82} to thefr theory. With Asmuth, he first explicitly jdentified the
o red noise probler [ASBZ] and solved it (though Bloom certainly [BL81b] foreshadowed
f:f this solution). lle works actively [BL83b] on minimal computational complexity

:i& algorithms for sclentifi{c and mathematical computations. His interest in linecar

—— algebra, and its applications outside mathematics, goes back twenty years, and has
-:a issued in nuerocus publicwtions not cited here because thev dre not directly relov.it
."..:

R

et

3

o

e

..-‘.“;." L) LIPS Y \‘_‘;*_-’_‘f-‘.-._-- ._-pp)q e




A7

to the topic at hand. The term linear aluebra is used here in an expansive secase
which includes matrix analysis on the analytic side, and integer matrices -- and, moure
generally , module thenry -~ oun the abstract algebraic side. He Is currently principal
investigator on a National Security Agency grant to do unclassif{ied research In
information thecry, some aspects of which are related to the theory and practice of
p/s/r processes.

J. Bloom is the inventor of the Bloem threshold scheme [BLB1b], the fastest
known. ilis work prefigured the development of the Bloom-style p/s/r processes and the
hyperfast p/s/v processes., His influence is major and his insight into every aspect
of the subject is iucisive. His grasp of geometry, including algebralc geometry, is
powerfui. He has devoted the last two years to sophisticated programming efforts on
computers near tlie edge of the envelope.

C. Asmuth, Bob Blakley, G. R. Blakley and J. Bloom have all known each other for
more than five years. They communicate effortlessly with eacn other on technical
matters. The requested travel funds will be used to get two or more of them together
for periods of several days at several points during the werk.,

BIBLIOGRAPHIC CITATIONS LIST

ABR3 P. H. Abelson, Glass fiber communication, Science, Vol. 220 (19873), p. 463.

AN83 Anonymous, C” experiment explores data restoration, Aviation Week and Space
Technology, Vol., 118, no. 17, April 25, (1983), pp. 155-158.

AS81 C. A. Asmuth and G. R. Blakley, An efficient algorithm for constructing a

cryptosystem which is harder to break than two other cryptosystems,Computers
and Mathematics with Applications, Vol, 7 (1981), p. 447-449,

AS82 C. A. Asmuth and G. R. Blakley, Pooling, splitting and restituting
information to overcome total failure of channels of commnication,
Proceedings of the 1982 Symposium on Security and Privacy, IEEE Computer
Soclety, Los Angeles, Californla (1982), pp. 156-169.

AS83 C. A. Asmuth and J. Bloom, A modular approach to key safeguarding, LEEE
Transactions on Information Theory, Vol. IT-30 (1983), pp. 208-210.

BE68 '« R. Berlekawp, Algebraic Coding Theory, McGraw-Hill, New York (1968).

BE74 E. R. Berlekamp (Editor), Key Papers in the Development of Coding Theory,
IEEE Press, New York (1974).

BE78 K. R. Berlekamp, R. J. McEliece and H. C. A, van Tilborg, On the inhercat

intractability of certain coding problems, IEEE Transactions on Informatio.
Theory,Vol. IT-24 (1978), pp. 384-386,

BL79 G. R. Blakley, Safeguarding cryptographic keys, Proceedings of the National
Computer Conference, 1979, AFIPS Conference Proceedings, Vol. 48 (1979), »p.
313-317.

BL80O G. R. Blakley, One-time pads are key safeguarding schemes, not cryptosystems.

Fast key safeguarding schemes (threshold schemes) exist, Proceedings of the
1980 Symposium on Security and Privacy, IEEE Cowmputer Society, New York
(1980), pp. 108-113.

BL81a G. R. Blakley and Laif Swanson, Security proofs for ianformation protectien
systems, Proceedings of the 1981 Symposium on Security and Privacy,
1EEE Computer Soclety, Los Angeles (1981), pp. 75-88.

BL81b J. Bloom, A not¢ on superfast threshold schemes, Preprint, Texas A&M
UIniversity, Department of Mathematics (198!), and Threshold schemes and error
correcting codes, Abhstracts of Papers Presented to the American Mathenstical
Soclety, Vol. 2 (1981), p. 230,

BL82 G. R. Blakley, Protecting iuformation against both destruction and
unauthorized disclosure, Proceedings of the 1982 Carnahan Conference on
Security Technoloyy, Univ. of Kentucky Press (1982), pp. 123-133,

BL83a R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley,
Reading, Massachusetts (1983).

G .,

%

“
)
~

<
pl
<
-
o
4

5"

| Qe




Al8

K
Kl
d
F BL83b G. R. Blakley, A computer algoritim for calculating the product AB modulo M, H
; IEEE Transactions ou Computers, Vol. C-32 (1983), in press. .
. BR81 W. J. Broad, Reagan eyes the message gap, Science, Vol. 214 (1981), p. 312. :
N DA8O G. I, Davida, R, A, DeMillo and R, J. Lipton, Protecting shared cryptographiec !
N keys, Proceedings of the 1980 Symposium on Security and Privacy, LEEE j
: Computer Soclety, New York (1980), pp. 100-102. :
: DE82 D. Denning, Cryptography and Data Security, Addison-Wesley, Reading, i
- Massachusetts (1982).
- DI79 W. Diffie and M. Hellman, Privacy and authentication: An introduction to
- cryptography, Proceedings of the IEEE, Vol. 67 (1979), pp. 397-427.
j EL83 B. M. Elson, USAF studies new computer concept, Aviation Week and Space
' Technology, Vol. 118, no. 19, 9 May (1983), pp. 69-71.
< GA78 M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
XN Theory of NP-Completeness, Freeman, San Francisco (1978).
E: GA83 J. Garrett, Pulse-position modulation for transmission over optical fibers
[ with direct or heterodyne detection, 1EEE Transactions on Communications,
3 Vol. COM 31 (1983), pp. 518-527.
. G083 R. J. Godin, Laser tool brings ultrafast devices closer, Electronics,
) Vol. 56, no. 9, 5 May (1983), pp. 112-116.
- HABOD R. W. Hamming, Coding and Information Theory, Prentice-Hall, Englewood
e Cliffs, New Jersey (1980).
- HE7 4 T. Head, Modules: A Primer of Structure Theorems, Brooks Cole, Mcnterey,
g California (1974).
N HO71 K. Hof fman and R. Kunze, Linear Algebra, Second Edition, Prentice Hall,
- Englewood Cliffs, New Jersey (1971).
:- JA64L H. Jacobson, Lectures in Abstract Algebra, Volume 3, Theory of Fields and
- Galois Theory, D. Van Nostrand, Princeton, New Jersey.
2 KA81 E. D. Karnin, J. W, Greene and M, E. Hellman, On -ecret sharing systems,
<. Verbal presentation, Session B3 (Cryptography), 1981 [EEE International
{ Symposium on Information Theory, Santa Monica, California, February 9-12
- (1981) and On secret sharing systems, Preprint, Stanford University,
b, Department of Electrical Engineering (1981).
) K081 A. G. Konheim, Cryptography: A Primer, Wiley-Interscience, New York (1981).
e L183 T. Li, Advances in optical fiber communications: An historical perspective,
N 1EEE Journal on Selected Areas in Communications, Vol. SAC-1 (1983), pp.
356-372.
. MA67 S. MacLane and G. Birkhoff, Algebra, MacMillan, New York, 1967.
{ MA77 F. J., MacWilliams and N. J. A, Sloane, The Theory of Error Correcting Codes,
e North-Holland, Amsterdam (1978).
%j MA31 K. Mahler, p-adic Numbers and Their Functions, Second Edition, Cambridge
;j University Press (1981).
. MC77 R. J. McEliece, The Theory of Information and Coding, Addison-Wesley,
. Reading, Massachusetts (1977).
. MC81} R. J. McEliece and D. V. Sarwate, On sharing secrets and Reed-Solomon codes,
- Comminications of the ACM, Vol. 24 (1981), pp. 583-584.
fj NE83 S. B, Newell, A, .J. de Geus and R. A. Rohrer, Design automation for
W integrated circuits, Science, Vol. 220 (1983), pvo. 465-472.
NO69 B. Noble, Applied Linear Algebra, Prentice-Hall, Englewood Cliffs, New Jersey
. (1969).
S NT81 S. C. Ntafos and S. L. Hakimi, On the complexity of some codiug problems,
» IEEE Transactions on Information Theory, Vol. IT-27 (1981), pp. 794-796.
J) PE72 W. W. Peterson and E. J, Weldon, Jr., Error Correcting Codes, Second Editicn,
o M.1.T. Press, Cambridge, Massachusetts (1972).
4 P1.82 V. Pless, Introduction to the Theory of Error Correcting Codes,

Wiley~Interscience, New York (1982).

.
-

'l
.

PR N N T T TP T Y R R a - .
N\, . ROV UL L NN SRR L e . o LS . - -

LTI T PRI T ) L B e S L
[RE 2 S R e N AN A A A T AT Y A A L LU U TR iy At S R N P LS S PR AL



I ION IO

Al9

P0O82 R. D. Posner, Packet Switching, Lifetime Learuing Publications, Belmont,
California (1982).

SH4Y 9 C. E. Shannon, Communication theory of secrecy systems, Bell System Technical
Journal, Vol., 28 (1949), pp. 656-715.

EA83 S. €. Rashleigh and R. H. Stolen, Preservation of polarization in single mode

fibers, Laser Focus with Fiberoptic Technology, Vol. 19, no. 5, May (1983),
pp. 155-161.

RE60 I. S. Reed and G. Solomon, Polynomlial codes over certaln finite fields, .J.
SIAM, Vol. 8 (1960), pp. 300-304,

RE67 L. Redei, Algebra, Volume 1, Pergamon Press, Oxford (1967).

ROB3 M. J. Ross, Military/government digital switching systems, IEEE
Communications Magazine, Vol. 21, no. 3, May (1983) pp. 18-25.

SH79 A. Shamir, How to share a secret, Communications of the ACM, Vol. 22 (1979),
pp. 612-613.

SL81 M. F. Slana and H. R. Lehman, Data comminication using the telecommunication
network, Computer, Vol. 14, no. 5, May (1981), pp. 73-88.

ST63 J. J. Stone, Multiple-burst error correction with the Chinese remainder
theorem, J. SIAM, Vol. 11 (1963), pp. 74-81.

ST83 B. W, Stuck, Calculating the maximum mean data rate in local area networks,
Computer, Vol. 16, No. 5, May (1983), pp. 72-76.

TH83 D. E. Thomsen, A pure laser for clean communications, Science News, Vol. 123
(1983), p. 260.

Vi79 A. J. Viterbi and J. K. Omura, Principles of Digital Communication and
Coding, McGraw-Hill, New York (1979).

YA6R P. B. Yale, Geometry and Symmetry, Holden-Day, San Francisco (1968).

i, Key Personnel.

YLYK Ltd. was incorporated in Delaware on 4 June 1979. It is currently
headquartered in Ann Arbor, Michigan. It has produced software, designed algorithms,
designed systems in the area of coding, communications and cryptography, and has
conducted studies.

Bob Blakley, born 13 July 1960 in Washington D.C., is a citizen of the U.S,A, and
a 1982 honors graduate of Princeton University. He married Karen Hejtmancik of
College Station, Texas, on 7 August 1982. His previous technical employment history
can be found in Section 10 above. He 1s currently involved in part time teaching and
graduate study 1n computer sclence at the University of Michigan., He 1s coauthor of
three papers on cryptography and information theory in Cryptologia, Volume 2 (1978),
pp. 305-321, Volume 3 (1979), pp. 29-42, and Volume 3 (1979), pp. 105-118. He is
president of YLYX Ltd., and will be principal investigator on the proposed research.
His Social Security Number is 460-06-2353.

12. Current and pending support.
SBIR proposals very similar to this proposal, all bearing the title

High-speed low-cost ways to get messages from a sender to a receiver when
some channels linking them become inoperative,

and all having Bob Blakley, President, YLYK Ltd., as principal investigator are being
submitted in May 1983 to the following DOD components under DOD Program Solicitation
Number 83.1, Small Business Research Program, Closing date 31 May 1983:

<« -

T P L P o N L N SR
A PO T LS Ch LR RN G YIS S IS W A SN A PT



TN @ T WS E— e YT VT AT & s .

arithmeric

tN)

B
Appendix B

Tables of GF{.

~n\_~‘.-{ D

Vo ey N IR Y 2 SR
. »-f- - 4 ..1.. '4- ..n.. Ly - IO ..-...

P e PSP ML LALR AR

\c.~.fn.fl g
v” LAy .ﬂAﬁﬁaAwW;mquAff ~




r~
~—
o
=)
o =
. . o~
B -~ [}
Il U el
' [ '3
. = *
. [ )
. ¥} u.
3 ~ (4]
A *
. * [ 9%
. €4 (o
B
.
. o a
’ —
‘L [ 0
* 0 m
h - 1 [ )
. ! 1
L1 ' [ o [}
— 1 =] 1
o o ot [
m ForY 0 e D -t { < r ooy
F-- r-¢ m [ I |
ViR O - u [T o' B o B ]
c - | ot -
' n i -e >y — I e M
P RutR ) Q. RechN |
‘ a2 [ o I - t DD O T
A ~ -- ) =
. o) I i - §ome e s e
o ] [} 3 )
I R e IR o I S} = + 8 D e TR
v
s
v
»
»
2
r
[
.
2
B
v
i .

.ﬂ-\nu-.-t ”.r.......\k«&i.ﬂd-. . e 2 PPN D Gl NS A Y % Ny A N . N P, S VAN -...H" cf\f\ HJ-H
: IR . . Y

M
-
b=
—~ (=]
=
(]
- -
~— ()
o ~
o »
= -
o
P | 1
e ] w '
~ ' (=] 1
- ] |
- 1 (. |
8] ] [} '
' - ]
w. ] \
[ ™~ [ [ SN
VI~ O g 1Y O T — [T o T B S BRI S
[ 0 e} o0
"] [ B o T B o B e e L] 1 S -0 ) Moy
-~ Wy - wy
I NN 0 DY) 1 T3 ) v~ - M D
1] < | [ «<
—~ | < u) O~ D e O o t > =~ 0 G4y
o 20 - o
L] P M~ O~ oD - I DM 0T~
[ ~y o} L] 1
I C3 30D = 0~ <t 1) (W] D0l 0 -~ )
[l - — - |
a | = 2N o~ 0 — I D v 03D = W) O
- ot ol D
3 b D a4y T O — VD DD DD D T
~ -- 1 - -—
© L e LR 2 - L el
=) ] b '
i 4 + T e vl ) 0~ © + D e CU Y U D

ref J'-v\- ....od N )-«u [T Wi 00N ‘ ...-\o 4“ A-n\‘-q.. ’ AR AR




.
B
»
L3
]
o
1
o
'
¢
’
v
D
]
#
)
0
’
.
o
v
.
'
¢
a2,
'
.
3
J

P
A

A

_::\
RN f131ti1en Table for GF Z+#+id, Moa127 )
'.- ..1

‘:' + 0 00 01 92 03 04 03 ds 07 L9 11 12 13 14 15 ta 17
LI =~ 00 e e e e e r et e e m e — e e e — — . e e - —————
R QO3 00 01 02 07 08 95 95 07 10 11 12 1314 15 16 17
o DL 0 01 00 03 02 03 04 27 94 11 10 13 12 15 14 17 16
.:f 0Z 4 02 03 00 01 96 07 04 0T 12 13 10 11 16 17 14 1S
S 0 0 03 02 01 00 07 06 05 04 13 12 11 106 17 16 19 14
: 04 ¢ 04 65 06 07 00 01 02 0T 14 15 16 17 10 11 12 13
0 25 1 05 04 07 06 01 00 03 02 15 14 17 16 11 10 13 12
(-~ 08 7 06 07 V4 05 02 63 00 01 14 17 14 15 12 13 10 11
;:}: 07 1 97 06 05 04 03 02 01 00 17 16 15 14 13 12 11 10
AR O 10 11 12 12 14 1S L& 17 00 01 02 03 04 VS 06 07
‘:}Q tho 11 19 13 12 13 14 17 16 01 00 03 02 05 04 07 06
Al 12 0 12 13 10 1Y 16 17 14 1S 02 03 00 01 046 (7 04 05
x.\ £300 13 12 11 10 17 16 15 14 03 02 01 00 07 06 05 04
o 14 1 14 15 16 17 10 11 12 13 04 05 66 07 00O 01 02 0F
-:;E 15 0 13 14 17 146 11 10 13 12 05 04 07 06 21 00 03 G2
;x:p ta 1 1a 17 14 15 12 13 10 11 04 07 04 063 02 03 09 0t
'::g 17 00 17 1o 15 14 13 12 11 10 07 96 03 5 03 02 01 90
‘ 4:,.\

iy

)

e

N

o~
E3

tultiplication Table for GF :#xcd) pModi23

Oh
<
A 000 91 02 03 04 05 06 57 10 11 12 17 14 18 16 17
b :-,J. ____________________________________________________
f 290 00 00 00 a0 09 00 00 00 G0 0D 00 GO 00 90 90 00
e GLoto00 01 02 03 04 05 Go 07 19 11 12 13 14 1S5 15 !
ot G20 00 02 04 06 10 12 14 16 03 01 07 05 13 11 17 iS5
oy 3300 00 03 06 05 14 17 12 11 13 10 15 16 07 04 01 92
.o 4000 04 10 14 03 07 13 17 06 02 16 12 05 01 15 11
$=} S G0 05 12 17 07 02 15 10 16 13 04 01 11 14 03 06
L 5 4 00 D& 18 12 13 15 07 01 05 03 11 17 16 10 02 04
e TG0 07 ta 1L 17 1o 0L 06 15 12 03 04 02 05 14 13
\ Er L 00 10 0T 13 06 16 05 15 14 04 17 07 12 92 11 0
~;"- C00 11 91 10 02 13 03 12 04 15 05 14 086 17 07 16
e £2 0 00 12 07 15 16 04 11 03 17 05 10 92 01 13 Cé 14
Ny 1T 00 13 05 te 12 01 17 04 07 14 02 {1 15 06 10 03
~ (400 00 14 13 07 05 11 16 02 12 06 01 15 17 03 04 10
= S 100 1S 11 04 01 14 10 D5 02 17 13 0& 03 16 12 07
Tl ta ¢ 00 i 17 01 15 03 92 14 11 07 06 10 04 12 13 S
e Tl 17 15 02 11 06 04 13 DL 15 14 0T L0 07 05 i3
o




£, I

A

5}:§{ seditica Tatle for SF 45} Moaids

e

» '.:..

o~ L0001 G263 04 95 96 07 10 11 12 13 4 15 16 172021 22 23 24 25 35 27 30 31 3233 34 35 36 17
00 00 0102 03 64 05 06 07 10 11 12 13 14 15 16 17 20 21 22 23 24 25 26 27 30 31 32 33 4 15 36 37
9119100 9302650407 06 11 10 131215 1417 162120232225 4 27 26 31 30 33 12 35 34 37 3
©200 0207 90 01 06 07 04 05 12 13 19 11 16 17 14 1522 23 20 20 26 27 24 25 32 33 30 31 36 37 34 35
J3 13620100 07 08 05 04 1T 12 11 10 17 16 1514 232221 20 27 26 25 24 3332 31 0 37 36 35 4
00040506 37 90 01 02 03 1415 16 17 10 11 1213 24 2526 27 2021 22 23 34 3536 37 30 31 2 35
95 105 04 07 66 91 60 63 02 15 14 17 16 11 10 1312 25 24 27 26 21 20 23 2235 34 37 36 31 9 33 22
Go t 06 07 94 05 6203 20 OL 16 17 141512 43 10 11 26 27 24 25222320 21 36 37 34 35 32 37 30 3
G707 06 43 0A BT 020100 17 16 15 14 1312 11 1027 26 25 20 23 2221 20 37 26 15 34 13 32 31 36
YD E) 1L 1213 14 45 1o 1720 01 02 03 04 05 06 07 30 31 3233 34 156 372020 2233 24 25 26 27
M0 N3 A2 15 14 1T 1401 00 03 0205 04 07 06 31 30333235417 152120232225 M4 27 2
120121340 15 5 17 141502 03 90 90 95 07 04 05 32 33 30 31 16 37 14 3522 23 20 21 26 27 24 0
D30 AT U208 0007 15 1§ 64 93 02 01 00 07 06 05 04 3732 31 30 37 36 35 34232221 20 27 25 15 34
140 1415 16 17 10 11 1213 04 05 96 07 0 01 D2 03 34 35 36 37 30 3132 33 24 25 25 27 Zp 0t 11 27
P50 IS 41T 3 1110 13 12005 0407 06 01 90 0302 3534 37 36 31 30 333225 24 27 26 21 20 21 12
fo t 1 47 413 A2 1310 1106 07 04 0502 03 00 01 36 37 34 3532 33 30 31 26 27 24 25 22 13 20
171 A7 1615 14 1T 12 11 10 07 96 05 04 03 0201 00 37 36 35 34 333231 3027 26 25 24 I3 22 21
3000202022 232425 26 27 30 31 32 33 3435 36 37 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17
20020702322 2524 27 26 31 30 33 32 35 34 37 36 01 00 03 02 05 04 07 06 11 10 13 1215 14 17 1b
2022232020 26 27 24 25 32 33 30 3 36 37 3435 02 03 00 01 05 07 04 05 12 13 10 1L 15 17 1415
7023222025 27 26 5 24 33 32 31 30 37 36 35 34 03 02 01 00 07 06 05 04 13 12 11 10 17 16 15 14
2402425 35 2720 20 22 23 34 35 36 37 30 31 32 33 04 05 05 07 00 01 02 03 14 15 16 17 10 11 12 13

75 34 37 35 31 30 33 32 05 04 07 08 01 00 03 62 15 14 17 le 11 10 13 i2

NI ATHUNER

a3V Ze X7 2T 222330 21 2637 34 33 32 33 30 31 06 07 04 03 02 03 00 01 16 17 1415 12 13 10 i
7242302202077 3035 343332 31 30 07 06 05 04 03 02 01 00 17 16 13 14 13 (2 11 10
UM IIMIT I IT 2222324252627 10 10 12 13 14 13 16 17 00 01 02 03 04 03 96 07
P DI T2IT AT T2 202322 25 24 27 26 11 10 13 12 13 14 17 16 01 00 93 02 03 04 07 06
202333030 3637 343522232021 2627 24 25 12 13 10 11 16 17 14 15 02 03 00 0 05 97 04 45
3230734232220 2027 2625 24 13 12 11 10 17 16 15 14 63 02 0f 06 07 04 05 04
T4 0343316 37 Z0TL 323324252627 2028 22 23 14 15 16 17 10 11 12 13 04 05 06 07 00 01 02 03
MM NN ITRNAL NN 022191417 16t 10 13 12 03 04 07 06 01 00 43 02
3613637 343532333031 2627 2423222320 28 1h 17 14 13 12 13 10 11 06 07 04 03 02 03 00 01
TS IEIAGTIZINT027 26 25 24 23 22 21 20 17 tH 1S 14 13 12 11 10 07 06 03 04 03 02 01 00




0

3R g

g

IRV
D)

19

{0

o0 38

Va0

SIS,

N 95
Loaomy

N
ST
DI

.
07

0

134
15
17
i1
v
1%

e
i

7
5!

ey

ad WY

1) 4

wi

LR

i
»r
*
e
3/
31

khd
-

[

<=

—_— oy e
—r

yo
M
- .
33

361

-c
ot

2 :

270

273

2l
25

26

L% BN
i

{
is

g
2

312

11
vi

79

P

342

13
15

31
0z

07
04

D oy 2w oen - s -

o)
10
243

k&)
e

02

2 13
2 20
2 31

703

12
2
(]
04
i3
26
7
05
i4
27
74
UE]
17

, 24
b 75
397 06

16

23 :
03 34 30 97 20 17 13

97

2/
e
Jd
1Y
"

L

21
33
03
7
34
26
10
UM
13
01
37
23

14

nn
-l

3000 99

13
25

5
i)

M

33 24

i
02
37

;24

22
3l
4
i7

17
SN

-
[N

25
23
30
03
16
32
21

14

25
k&Y
vl
15
I
17
I
27
M
32
26
02
ta
35

an
i

04
12
13
87

P

-
37
2
33
i
03
04
19
34

i<

™
Jé

27
A
34
13
h
a7
12

~E
)

20
24
33
14
0
15
3
24
M
37
22
03
19
{1
04
23
36
MY
23
02

16
o4
22
5
23
01
17

-~

"
i
03
s
02
14
34
20
33
28
a7
11
06
10

32
2

2%
04
(2
30
2
3
27

05

17
&
21
1
2b
07
10
27
0
i
06
14
01
2
3
13
4
23
32
2

5

14
03
34
3
02
15

03
23
12
32
17
37
24
04
21
01
36
e
33
{3
15
33
10
30
07
27
02
22
31
i
34
14

1!
30
34
13

[ A== o L 2 ]
PN W ORI N B NP 2

<

T
w

14
12
13
23
2
24
0s
0t
20
06
27

09 23 17
12 03 36 24
3321017

L]
03
27
06
24
07

1
23

19

19
33
12
30
13
3
{4
36
15
37
16

nc
ad

03
28
14
M
17
3

"
/
&

il
i1

72

34
13
33
10
16
13
5
14
24
07
27

04 17 2

2214 29
01 30 45
21037
24 06 31 3502 25 12

14
27

-

03
21
05
34
10
13
37
06
22
07

12
ki
35
{1
20
04
25
02
33

o4

23

1
1

26 1

38
0
02

-
<

23
14

-

{
UL
1
21
24
13
03

32 3691 2

23

3G 2
02!

34

va

c
o

27 ¢

Laa
—— N g <ozn

Pa o= P P = e

=~

01
33

337

(32
33
8

2 04

M
a7

; Ld

b
14
2
10
25
27
12
03
M3
74
UH
0
03
o7
T

S
U
15
13
27
;
a0
-
‘7
-

i3 28
> 24

1

DA, St A A A AN AR A A B g

IV

pE
3
07
27
i1
16 i
20 27
2
23 3
227
14
74
02
93

77

I &

26 Ut

10
173
21
01
7

BARE

e
TE
iv
5T
Vo
4
7

oA
[¥4

a9
&

23

<
o

R

P2 »m e 13
o .

[



S an e LAt i i s e Bt e S et S S Bt et - AR ACR g AR T e AT A D o Al A o e

1l

J WL S N

Appendix C

PN

Selected tables of Vandermonde matrices

Yo Sy W

FRyns

-y

T T VL

e

ok

a—al

v

-
caltd S o

- -
"o

‘L, m o« T e e S T et s . . e L. . . - N
PR LI e P AT A LY UL VO P R R T IS oo e e e -
P AN PR SE RCRPE AIRI APRY AP R I IS AR LT PR A R, DR S T RN

Y
'




L R
DT ]

SR A

P

PR

e
Ll

L

P20 I AP

N

4 ‘A
R,

b o

o

»
rd

i
Y S

-
iy
L

)
'l"l. [N

’ .
el
.- - & e

NN SN PV Y

)

o
*
-
“

ORGP FRNG Yy e
S s !

boa pm = pa pm = bom pen

b BT I OV BN [ B s e S

doge L0y e T

o ra

BRI S

a4

PEINT & I 3 Y IR S

Vanderwonae

ol
e
AN

LA
.

— e A s

or pm e g b -

G
0
ol
o4
L
a3
(:4
4
e
i2

— s . e -

e el o

30
ol
04
07

14

[T S o
< -y

- e e s 1D
(SO P ¢

it

[k

a1

ta & Ld O Lo

00
01
03

03

[ T

erncnde Matrig

no
a1
0é
07
1
06
07
€1
b
07
gl
04
07
01
04

nY

+0r

for

00
01
14
17
10

A
a -

01
14
17
T
12
31
14

7
1G

12

a0

4 v 1

P

04
17
07
14
1
07
04
12
02

05

75}

1

GF

oy
1
03
[
12
04
07
0
16
05
17
06

{1 €
I

14
11
1z

EX N

e 2 R

[VI1)
01
12
10
17
14
01
12
19
17
14
D

+ 0

T

i

i
¢
3
!
{

3

3)

4)

0o
0t
07
064
a1
07
&
DBt
Q7
oS
01
07
06
01
7
b

mod 13

mad

00
01
14
13
190
i1
27
14
04
15
06
02
17
09
03

00
01
17
12
14
10
01
17

00
01
15
14
12
£3
06
10

12 02
14 i1
10 17
01 07
L7 05
12 14
14 o2
1o O

is

09
01
i
13
17
té
7
1z

0e
s

90
o1
01
01
01
1
0t
01
ol
ol
1
0
0l
01
01
0

(FLos s ¥ v ™ EA/Ch

| SRR AP Sl WP

Y

PR SA TN W T T Y I SN SN PY

e oaaushibe o

NP Wy T

PP

i

PPN AT RS WV ¥ PO PP S I By PP )

PAPART Vor

A AL A

adam

PPN

i sl s

IS IGION




v'e

]

v

4

Mo

D)

BRI

)
o

)
1

N

i

U

D]

1)
v

v

30000 59 00 w0 G 50 67

) 0% 9

DOINYH D

)

3

O

P

26

R
v

7
-i

!

- -
.0 02

2% 14 30 25 17

T
Ld td

a4
e &

37
g
i

e T
S

4
7 2%

1
[y

1224 13 32 24 97
ac 1

\<
i

(1ID]

o
!
5
i
1
1
1
1
!
1
4

L

T T g

3

Gl

79
)
133
4

P

&

WIS

24 1

2
34 25 4
ac 0T
3318
n
52
1 1

v
1220 042

T

23 31 2%
214

Y
-

3207
4
3

3320 20 11 17 23 07 05 22 Ja @

o+

A
2
2
2
)
2
2
1
DAY
)

0
374397 31 63 67 20 25 30 38

337
c

]

24

o

c

<

1as 12

ORI LGN
3
62
J
{1
3

1297 3330

B34S 35 14 27 02 14 T4 06 T ot
€ 57 8
1
7 e
b}

92
3720 3%
am
o

r

J
e
s

T

-
3t
3818

57 23 06

R

A N7
-
4
-4

1

JNRIIT WU
b 06

07 34

L0220 UM/ M
7
27

TI7 212141

-
4

)13

23140332

™
KA
[
[N}
AL &

7
i

I503 2527 22 10 24 07 37 06 17 13 31
3

32

20 35 10 3417 4

1927 63 21 54 31

25

Ja

-

24

i
-
|

<

0 4

05
T
)
N
*
827

0

3023343205022 143316820

80214151337 66

{
14

122 04

d
4
b
-
;
t
!
a9
22

4031720423 1623251

1332325103297

251103 1505270
02825

222
:7 G337
bt

27

2

K
32

l

230
IR UM VI

-~y

¥
3
1
2

[}

‘\',l hod e I 4
5
<

P

o

S
-
5,

-
hdal
o de

£

517 03 34 15 10 11 34 06 33 32 20 22 31 14

031 ed 22

+

o

1"
LI
7

i
k4
i

7
&

U497 04T

0427 26 16 03 U

o
k4
~
1

<
v
3
“
-
4

7

3521 12 94 1

3G
Ll
<
i
b
NI
v
‘
Y-
- v
e
04

“d
42
-
a7
423
p A 4
he v
y I8
A
‘s
73

120

a2 77

14
.
b

) .'AA.

)

407 32 24931

v
2
V€

21
B

{7 7o
1222
e
o
57

[

PR

4

1) 36 13 22 M 9
7 14

v

o~

T
J
-
AR

b
3
14
G0

v
7

o7

Vi o

o

J

14
4

7
n;

3

s
-

IRy
S BRI

s

04 02 0

<
™

<
(a¥]

-y
«3

ul

*y




T

&

Appendix D

Tables of ENF (encode normal forms) produced by

cold precomputations



hal § Ve WLV W Ty i - -
B S e A i A e o e P i S i S e T Al B St s Bk S At it gt e e Spe Buss Bt~ A (6 i

n2

Tee D

I
-
=
2
o
-
)
.
4+
u
S
il
!
O
I
i
-
ou?

P
)

INF Matris taor BF Z#x0 I mcd 12 15t

PO S U S A S S

T2 5 T8 LD

=321 3190

33285 19090

425810000

T2 00000
LT
e
.
Y
N
o
'-"
v.‘

) ENF Matrix for OF Z#%( 4) ngo 27 is:

N

LQ wi oot G 0l 01 01 0L 01 01 31 9l 9l 0ol 01 01 0t
- 17 02 Ge 1a 13 13 07 14 11 03 04 12 05 10 &1 09

Pa 10 19 14 04 11 18 04 01 {0 05 11 05 01 920 00

D714 16 D9 03 17 03 13 12 03 48 12 01 00 00 00

19 7 62 14 62 98 11 14 12 10 D4 01 00 00 ©G 00

S0 1207 12 03 11 1E 01 0T 01 00 00 00 00 39

21 1A Do 1E 04 3T 04 1L ol 00 00 00 00 00 00

ST ois 07 02 17 1S 14 Of 00 G0 D0 00 00 V0 00

o4 LI Ld 0T LY 07 0 00 00 0o 0D 00 50 00 00

e Io0b 0D ve s L3 oel 09 06 00 00 00 Q0 00 GO 0o
}; PTOLT v L& LT 0L G0 00 90 00 20 00 00 00 20 D0
:y oo D ts 0p 00 20 00 00 00 €0 00 00 g9 00 T
. CTODD ra M 00 00 Q0 00 G0 00 00 00 00 00 00

;: Tl 0o 0y 0 00 00 09 00 09 B0 00 DO 00 90 DO

f4

» v S
s RS

,
P

.J
v
-

®




Lol ot o
= 'l "4 [
da Wy L2
EIE g ¥
i 33 04
17 44 ==
L ls Lt
. v
o 33T
~y vy
17252
T e
003 3Z
N
- TS |
TR I TR
hd - Ot ~T
a0 b Le
PR S
gy we e
LT
kg ! t e
[SART- I
LTl
‘o B - T
I Ue .
- A
1L T. M
by c
Thont oGl
~c 1
VNS
s 207
g Ll

TEEVE
N4 1{
«d i
T ¢
4 J

19 08 )
3920

ubool
. e
.3 .
7 e
IFE
v o=
<8 LT
. -
32 (o
R IR ¥ |
(AP
RN
WV
.
<

- g o

4> L~ N ) W

ot
208
11 28
17 13
vy 2t
20
R
pIL
2310
174
5o
7Y
717

-
P B A
rmoA
Y SN
SLINE-
9 T
[ ]
thoas
i xRl
-1 L
4t G0

90

30T

3 Gl OY

308 00

sl oot
10 22 03 5% i
3301 M9 T
IV D
N IS B R
1336 3 1)
L 1502 1y
W0
vE 31 1S ug 28
LIRS UIT B 3l
la 36 26 17 11
2503 M 02 0
45 TR 04 1
T 14
R BN
Lo
1ot
AR I )

SRS W

S200 S 0l

30 00 99
3 Gy 0 G000 6

GG 9 G G0
S g 40 0
60 00 00 90 00

35 3020

00
00
0o

G

Ly -

(4
-

I';

b
24
03
0

-y

24

07 2

Ny

00
0
00
0

A (i

LIS
-

417
34 0§ o
MMM
te 22 11
721 27
34 15 18
17 12 22
3 12 16
17 33 27
FLEF NS
27 2
07
74
01
00
ah
b

Do 90 A
0 G549 10
(N

)

a0 99 o8
00 0d g0
09 99 G0
90 69 99
00 €0 G0

3 60 8

) wu;u ATRLD

L0 oy

EH) ST SR B D S B S
STIUSE T
2 e 23N

S UD I 08 04 3 72
36 2200 2410803 U
10289321 1094 33 20
TL15 03 24 uvh 24 11 01
103300 112227 01 90
10 22 31 16 I0 01 00 0
LB B 000
wy 22 2 00 00 ¢
o 1090 )
7o DI
SISO AN TR BTV R
BORODID BITURSTIUN BOD BTV I

900 00 9y
00 2h 09 9)

'-}U i

a0 00
1) )
DIV,
THo 90 0
L0009 30
oG 00 00
J9 00 00 00
00 90 90 09
90 00 09 0O

20 00 9 90
ae 80 3 30

SRR

9000 B 9
00 50 9 09
2 0h 00 90
00 GO 90 00
00 ¢ 20 00
09 90 90 09
20 G0 Qg 00
20 G0 00 00
00 90 0% 09

ol 01 0t
07 14 32
35 16 32
3314 01
07 41 40
0t 06 90

300 00

09 30 09
N9 5 9%
00 90 1% 59
B0 00 9 Bh o0

90 00 01
96 90 B9
00 90 00

20 00 00
00 90 A

00 90 0
30 00 99
00 20 90

00 40 90 gy 90 00 90 00 99 00 00
00 90 09 00 00 00 00 09 29 00 0O

40 90 00 00 00 00 69 90 99 90

it

Lk
Lw

e
2}

50 4

29 7

G0

00
G0
90
09
(1]

09 G0
0 G
09 00
00 99
GGG
04 90
G0 G0
B0 90
00 00
YR

GO 00 00 Ou

e e e e m emma s A A A A A A e o s




M.

~

TSN

T

i

A

Appendix E

Examples of the encode/decode process




e an aoctal number.

the numiber of channels to be ==nt
1tting node. This should be a

iter the number of channels a

ctive at
ars node; this should be a dect

imal number.

< rar S ooubt o or 10

e 3R 2es o3 gnoa 27

HY

i1 13 G2

line ang sepazr2ted Dy Doalivs,
3 onharnnels act

the active channeles listed above

()

()

3 ; . onoane line and separated by blanks,

the data rzcelived cn each of the channele active at

Ve reca@lvers nonda, ThHe data should be 1n the form
r

of octal numbers, and should be entered i1n order of
Lnzr2asing chann2l nunber.
121 14 15 {6 17 07 14

rhie 3 tramz=anlbtten

l=artest words were

vl s Aa lanluer = E\grrESEd 10 Jdnanmel Order )

th 11 (217 14 15 1o 17

do vyou want to decode ancother 8 words?

(type v or nl. '

)

Flescse enter. on one line and separated by a blank,
the fisgld-base and modulus to be used. The
field-bzse should be a decimal nunber and the
moaduluas should be an octal nunber.

4 27

Flease emter bthe mamber of chamnels Lo be sent
by the tYranzmliitting node. This srouid bz A
ecim=l nosbher.,

i

-~ L

olesze enter the mumier o5t chanme) s achi
t hip oz oanoula e 2 dactmal nambor .




-

i g
P AL
2¥.%
o ’
AT LA A

L s
L]

A
Pl

W
)
e

Fd

T

o O
ZF Lhe 3
eC21lving node.
U

line and

arated by blanks,
:hannel~ 5't1

1

.F

o the

O 00 D0 Q0

(v QD D0 00
[EREETH I 0 I T

: S 13 08 13
Ol DOy s D0 GO
XTI o N ST R T O T
[T T B BN TS IR T

arated S bloan
of the chanreiz z2oh

7 07 14

wWards were
channel order):

5 16 17
ecode another B words?
-

cshould be decimal.

NG

M GIN

ALY

«

1

AR, |




B AN

PRl W S N,

.p_l,l,'.‘- ’

l._" ot
AR A

)

‘! "l
d

N Ags, by
LR

7

DR

8

s \/ * .':..I

2.

Py

TRNNAN

‘.A:’..‘..\‘.‘ .‘l

line
modulus
7 e a decimal num

on:2

an octal

had - -
l2acse enter the number
by the tranzmirtib:ing node.

nLmber.

the numoer
node; thties

ard
T

o+ charnnel s to

Thic

ot channels
should be

2d by =2
The
and the

blanmtk,

number.,

e cent

should be a

active at
a decimal number,

»
e AL for 8 out of &
ranmele o2 DFO24# 01y nod 2T 158
ol il Te d 1% {1 13 0Z
Gt Toaal Lo 94 01 Ob

2t the

Tlease entEr, of ane lin2 and
thie gata recelvzEd on g2ach
Liie receryvars node Thes

L]
tnoreasing —hannel number.
1112 13 14 i3 16 17 14
hie 2

nlLE e ety 2 e eed L

1011 12 17 14 15 16 17

do youw want to decode ancther
(type v ar no. ’
n

and

an ong line

2 and modulus to
fizld-base shouwld be
modulus should b an octal
4 23

Flease ernter the number of
oy the trznseitting node.
decimal rmumbiar,

10

pleass entar
the reoaivars
3

b e of

i

P e
rodas wlilz

= ]

of the chann=ls
data should be
arnd showld be

FramsmiTtioed cleartext words

Crianinel

channels
This

Channe | e

shaould b oa

separated by blanwks,
active
inumbers shouwld e

listed above

zeparated by blanks,
active an
in the fcrm

2nieraed 1n order oy

were
order):

‘

% words?

cseparated by a blank,
bhe used. The

a decimal number and the
numbher.

to be sent
should be a

sCctive at

gacimal numboe,

... . .d'\-;‘.-‘\-‘_‘ -;\-;_‘1_‘-:_‘ L -.

decimal.

153




. - . N . -
*y ‘ ORISR R ol 6 SR v T o oeiooor L

hetnels Gy 2F Zee 3 onndg

I
(]
o
[H]
as

17 16 04 19 11 13 02

0207 QL 10 04 0t 04

tEr,. on Ine lins and s=2parated by blanks,
s 37 the ®B channels active

c2ilving rode, These numoers should be decimeal.
VARG &
matriy for the active channels listed above 1:s5:
QO DD DO 00 00 OO 00
8 D0 QOO0 00 00 O D0
OO0 GO O30 GO 00 GO 00
Ol QG GO OO0 DN D0 00
CGLoDp 10 a1 0T o 12
OG0 (G100 D0 S0 Q0
LT B VLA 0 T B T BN I A LI T
O L SC A IS LN 8

. .
N i

- j o £)

W - P - — = = =g T g o

e ST T3]y B s S|l A s

. NNE s T B e =l aeen i Lrder o

B 2EAE LAY ChaOnsE Nt
oot 12 1E LS 1s 17 14

WOrOS wers
chanmel ordse)

Lol 12 1E 14 15

i
do yoit wert to desode another 8 wordes?

WOy M.

on one line and separated by a blank,
and modulus to be used. The

!d be a decimal number and the

bz an octal number.

ent=r the numbsr of channels to be sent
) transmitting node. This showuld be a
decimal mumber,

)
o J S SN I . ——ai e
! nine receivers node; this zshould bz 3 dscinal number.
I <

ONF matrin for 3 out of 10
channels over GF 2#+(4: mod 23 is:

, D1 00 1 17 16 04 15 11 17 02
) OGOl 14 0D 07 01 1o 04 0L 04

nlease enter, 20 one line and separatea by blanks,
the numbers or the 38 channels active

at the reEc=i1virg noae. These nuntiers should be decimal.
1 272 495 =« 7 3

Decoder matri:;: ftciv the active chamnels listed above is:

D AT O OO0 Cele o i OO0
SIS RN ( Y a0

OO D1 00 OO G j

N AN R AT AT AT A
WS 2 AN 0,

)

SUAN ST BT RN

Cin Oy Qe




f-.{x".".“i‘

_f L.{L

E AP A0 AR
'll"l'.

fo 20

B
PR
PERCERY St b

[T A T S VO Y W TR B R ST
M G 00 Q1

Wy Ous e D0

1}
i

202
ot ooctal auncers, and

VoG T 00 O Y ) OO

ol = nrer, onoone line and =spar
the Jata rzczived on each ot the2 chann

r 1eeErs mdde. The data showld be
should be entersd

TN TS
00 00
D 0

by blanks

=

1N the farm

1n

active

order

tpIreasing chareel numbsr.

LGl 12 1T 14 1S 1e L7

che 2 transnitted cleartext words were
ooctal nonbers 2dpressed 1in channel order):

-

: &
CLowenl want to decode ancother 8 words”

t

N .

of

< T TS TY

Bl MR, Sebenndeclondh odsedinsdh S0 e,




e
e
. e

- A4,
i)
LR )

hSe S
(. I. *
Aty -

A0 -
P -',n‘: ;" ..f‘.

3
X}

ALV RN
NN

%
a
..

bE R

A A i 4
\,.'v’:- b\ 5
f“.“( -

1

v
N

737

please enter, on cne !ine and separatea ov nlanks,

the fisld-base, amoaulus, number of channels to be sent, -
ang number 2t cnannels to be receirved. The modulus

shoula be an zzt:l number: all otner numbers shaoula

b2 decimal.

-

- 2310 2

thank you...please walt

INF MATRIX--=~---mrmmmrm e

Y7 14 07 1% 63 02 11 06 13 17 16 17 G2
Gl G2 1o td 0T ool 14 13 14 01 07 14 10 02
QL NE 1S 10 02 12z 16 16 12 02 10 15 06 01
1 16 14 06 14 07 06 07 14 08 13 14 OF 09
01015 04 03 02 15 15 02 03 o4 15 01 0 00
G121 17 64 07 04 17 11 1T o1 00 06 00
w1l 07 1S 07 oty 1t w5 07 ol o 00 09
Cotd a3 tTotd 1T 58 14 01 0y 60 00 00 00
Lt 0r 12 12 01 1 61 00 00 00 00 00 00
AL Z 10 03 10 03 G 00 60 00 00 00 90 00
21 04 03 05 04 01 020 90 00 00 00 00 00 00
2112 11 12 41 00 506 00 00 00 00 Q0 00 00
2105 05 01 00 G0 20 00 09 Q0 00 00 00 00

0 10 01 00 90 00 00 00 00 00 00 90 09 00
01 01 00 09 00 00 00 00 00 0O OO 00 00 00
0L 00 00 90 00 00 00 00 00 200 00 Q0 00 09




A3 L AL AR A g St At AEA A CIIN g LN aruE sl ey e e e A S A A R SN A T AT N r..".."\f'_"’.'v]

Ch ‘

.

&~ CUEMATRIN=mmmmmmms o memmomeenn

w JLotd Lo 05 1T 04 03 uh 1L 0l _
11015 te 07 92 L7 15 14 01 00 ;

o 1412 14 03 1L 07 01 00 00 ]

o 17 01 02 08 04 13 01 o 00 0O

- 1707 10 14 15 91 90 00 00 00

. is 14 15 15 21 00 00 00 00 00 1

o ST 10 o0& 0L 00 09 90 90 00 00

.

PSPPI S PP S U WP WP G U Ty

I.A..'
WYY

Py
N
o S Dnden

A
LN

P j‘_ n. ;-..A-.. ‘.' 2
prap i ISl

RWORRRNY - ¢

7

Py X S AR

i

P e e e e e
et e COIRARL SoF




Lo o o

:'.A,

R ENCODE KEY-mmmoemmmmmmm e e
¥ ]
- A 1L DA 00 90 90 G0 09 00 Ol

[
e Eau nte ‘o 'z ’a a

03 1a 00 00 00 Q0 00 0l 00

R,
8

iy S 1S 1L G0 00 00 00 0t 09 00 -
~ e 10 07 00 N0 00 01 00 00 00 :
.= C1GL 01 00 00 0L 00 D0 00 00 ;
. 13 099 17 00 0f 90 00 00 N0 99 ’
N 17 192 06 91 20 20 99 00 Q0 09 3
4
4
. .
- K
AN X
) .
\ .
Al f
.Q

j
= ?
R R

e :
- 3
; 1
i J
¢ ]
< 4

- 1

& )

A

0 3

a :
£ 1‘
» .l

{: ;
" ;

-, . y

‘.o 5

", -
1

- ]




RS
CARN A

.

N . p3 'a.‘l

¢« v
LAY N
P

hAA
» -

16

.

NG
-._':_'n._\..' .‘ S : g

L X}

v
s T« "e Ve
2 s s

Tatat

WA

o

v, P i a i A s A o ¢ AL I AP Nl APy A i S
zieace enter, 2n one lin2, in sctal znd sefaratedg
v clanks, the valuas to pe *transamitted over th2
rrancsmitters S channels

iy 2

s

x1tted are ‘i1n channel grdszr)
1003 06 14 12 905

17 vwod want to send znother 3 worcgs”
+

ype y ar 1l

zlease entzr, or cne line, in octal and separated
zy olanis, tha vilies to he transmitted aver the
tiransmitters 3 channels
2403

vards transmitied are tin channel orderi:

To0d LS Ly 17 02 17 09 15 L

20 vou want to send another T worde?

T¥32 v O ony
12222 =rter, 2n Ine line, i1n octal and zsgarated
o+ tiznvs, tha wilues to ge :rapsmitted Zver the
“ransnitters I channels

5 710

«grae trancmitteg are in channel order):

To 07 ot 14 06 1) w2 14 11 1S

S you want te send ancther T words?
‘type vy oronl

sse entsr, on one line, 1n cctal and serarated
av blantz, the values to 28 ftransmitted over the
rranznltters T channels
L1241z

i
transmittzd are «in channel orger::
17 168 137 19 14 14 12 19

2o yeu want to send another I words?
ftyge v ar r)

slease enter, aon cne line, in octal and separated
-+ blantsg, tre values tno he trapemitted over the
transmitters I channels

4 1S 15

words trancartted are (in channel arder):

1S e o o4 L7 L2 0y 07 11

10 you want to send another 3 words”

‘*yoe y ar n)

I

please enter, on ane line, 1n cctal and separated
by blanks, the vaiues tc be transmitted agver the
‘ransmitters T channels

17 1o 4

wagrds transmitted are (1n crannei order::

17 1o 04 15 03 07 o8 s 10 12

warags”

13 you wart to sa2nd another
f~ype v ar n)

fte AN Rl Al

v

N W, e, WL,




i#aze enter, an one line and separated by Bblanks, .
-ne fi1eld-base, modulus, nurber of channels to be sent,

rq9 number of channels to be received. The modulus

zhZeid be an 2ctal number; all other numbers should

secimal.

2T 10 0%

mar o yOd...fpLBASE Walt

e R i e

PptT 14 07 1S 98 2T 1t 04 13 17 16 17 03
LT ot rd 07 01 14 15 14 01 07 14 10 02
CloTs g L0 2T 12 0t 1k 12 02 10 13 06 01
Doie 14 06 14 97 e 07 14 da 13 L6 00U G0
DOolEoae 23002 1S rn 0T 03 44 1T 0L 00 00
| A T A A S SR SERVI VAR S 1V R 1Y)
1097 13 0% t.orl 03 15 07 01 00 00 00 a0
o 0d 1S 14 LS04 14 01 60 DY 00 00 00
Sl 91 12 12 ottt 0L 09 00 90 00 09 00
ST ol 0T b ST 0L 00 00 a0 20 00 00 00
o3 05 2T 64 01 a0 00 a) 00 DG 00 Q00 00
o2 L2 0D g w300 00 040 ¢0 00 00
DT 0T 0l B0 g0 D L0090 00 00 G0 00 00
D0 00 00 00 50 90 00 00 D0 00 0D 00
ool 00 00 00 00 00 00 00 00 90 g0 00 00

Q000 00 G0 20 00 Q0 00 0D 20 00 00 00

AN

. v .
,L..I..’L.’.. .. LA S

Ly

o2

- . "o - - . - . T T - : . . ~ ~ N
L N R R} - R - < T

. T
I o A T R T T R P . .
O IS I I N P P A A T L S TP T T L D R T PR TS T U SO




‘AD-A142 831  HLGH SPEED LOH COST WAYS TO GET MESSRGES FROH R SENDER 272
TO A RECEIYER WHEN.. (U) YLYK LTD ANN ARBOR MI
B BLAKLEY 28 MAY 84 YLYK/AFOSR/SBIR1/83-84/0881
" UNCLASSIFIED AFOSR-TR-84-8528 F496208-83-C-01606 F/G 17/2.14  NL




il P
flu, = K

o

.25 ml

A

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

B Nl A R Py O W W




N AR A LN It B RN ) N S - " * S
\.‘
-~ E]l2
1]
.

3

D
A

. fs'.f.(

SUBMATRIX=============cmcuoan- ;

DN
[
)

D2 14 16 06 15 04 03 04 11 0!
11 13 16 07 02 17 13 14 01 C0
06 14 12 14 43 11 07 0} 00 00
13 01 02 06 04 13 01 00 00 00
17 07 10 14 13 01 09 00 00 00

o
a8

el

-l .. .l‘.l '; "

v

DAL

]

N

>

K .-“
223 5%

ot

Wi

a8
.i"

-+ 4:'4'

X
..‘_' (] ..(_.' '

13

&+
et

- :; g A }
V1080, 1¥

¢ .
AN

———




{‘f‘_l

v 'ft.'u ~

S,

8 A

A

&

1

b
¥
v

RN

ZHCODE KEY

07 06 03
10 16 13
05 16 06
10 03 03
17 07 10

17 190
15 07
15 02
13 02

14 13

LI P

00
00
00
09
a1

IS NS VA VY

Q0
00
00
21
00

00 00 01
00 i 900
01 00 00
00 00 00
90 00 00

‘ Q- - \‘ \-.\- .!"‘! .iw; g -1.\-“1 <\-.'.‘. ‘-- '\- N* \\ CATH °

f
f

\ e el g T e W e .".'-"-"a“i
PP PN T ALY, oY, O T Y,



4 ‘}.

$
i
b

20
.'I

P
RS

-

733

t

o

o P e

oy

Dy

.,

N
)

-

El4

clease enter, on one iine, 1n octal and separated
oy bianks, the values to be transmitted over tne
transmitterse 5 channels

2127343

words transmitted are (1n channel order):

00 01 02 03 04 02 11 13 14 04

da you want to send ancther 3 words?
(type y or n?

¥3

?
please enter, on aone line, in octal and separated

by blanks, the values to be transmitted over the
transmitters S channels

5487 10 11

words transamitted are (in channel order):

03 06 07 10 11 17 1S 1t 01 04

do ysou want to send anaother S words?

{tvype vy 2r n)

ks

3leass enter, on 2ne lire, in octal and separated
b2y blanks, the valuas to be transmitted over the
transmitters S channels

12 12 14 15 14

acrds transmitted are (in channel order):

12 17 14 15 16 13 16 07 06 13

g0 vyou want to send ancther 9 words?

{type y ar n)

please enter, on one line, in octal and separated
by blanks, the values to be transmitted over the
transmitters S channels

17 10 4 14 O

words transaitted are (in channel order):

17 10 D4 14 00 14 03 00 12 03

co you want to send another 5 words?

(type y or n)
n

-

¥ ‘I ", / .f‘.’." " .ff gt et T e e -v': 2 .ﬂ'..'. ‘o .!' .'.." -'.n".- L0 "-4‘. e




}-3 E15

~d

-2
T nlease enter, on one line and separated by blanks, .
¢ the fiela-base, modulus, nuaber of channels to be sent,
: ard number of channels to be received. The modulus
oy should be an octal number; all other numbers should
& be decimal.

4

'?.

E 423108

thank you...please wait

W)
%
> ENF MATRIX--~---c-omoooeaoonme >

' 21 17 14 07 15 05 02 11 06 13 17 16 17 03

¢L 02 10 14 07 91 14 135 14 01 07 14 10 02

.0 31 04 15 10 02 12 16 16 12 02 10 15 06 01
] 01 16 14 06 14 07 06 07 14 06 14 16 01 00
Sg 01 15 04 03 02 15 15 02 03 04 15 01 00 00

A 0t 13 11 17 04 93 04 17 11 13 01 00 00 00
by 71 07 13 03 11 11 03 15 07 01 00 00 00 00

01 14 04 15 14 15 04 14 01 00 00 00 00 00
<3 91 11 01 12 12 01 11 01 00 00 00 00 00 0O
s 21 03 10 03 10 02 Ot 09 00 00 00 00 00 00
A 01 04 05 05 04 01 00 00 00 00 00 00 00 0O
?§ 21 12 11 12 0t 90 00 00 00 00 00 00 00 00

¢1 03 05 01 00 00 00 00 00 00 00 00 00 00
G110 01 00 00 00 00 00 00 00 00 00 00 00

” 51 01 00 00 00 00 00 00 00 00 00 00 00 00
& 91 00 00 00 00 00 00 00 00 00 00 00 00 00
by
b




e

Ry

4. 88 SNl

02 14 Lo 06 13 04 03 04 1L O}
15 16 97 02 17 1S

it

13 01 0D




P52

-

*
e e,
A"-‘:‘ [RERLA

|

PRI A

PR

o

ENCODE KEY==-=--=mmmmmoooo 3

17 03 11 134 14 12 {4 02 00 01
il 13 16 07 02 17 15 14 01 00

.
-
G

-'_'-“.- \- \~ o' .‘~ \' .

o e
B




M S B ot e s s s B i o e e b e dam e e it it S O N

E18

' please enter, on one line, 1n octal and separated
o by blanks, the values to be transmitted aver the
- transmitters 8 channels ’
21237345687

? words transmitted are (in channel order):
- 00 01 02 03 04 05 06 07 17 04

LS

¥ 3o you want to send another 8 words?

o ftype y or n)

o 1

’ please enter, on one line, in octal and separatad
e by blanks, the values to be transmitted over the
;:J rransaitters B8 channels

i<§ 101112 13 14 15 16 17

W6y words transmitted are (in channel order):
! 19 11 12 13 14 15 16 17 07 14

vy do vyou want to send another B words?

éL (type y or n)

5% n

)

7:7

i

X

%g

:

o~

;

3

¥

H

§2¢

A

‘\i [l

s

s

ﬁﬁ

9

I

A .

-

)

»

B

‘ 'i

- ‘, c ‘I LIRS .-. -~. -{s- [ i E 'e 'c "ot ", - ~o\::) \:}.’O\,'\.:.'..




> Lk Pl gt St el vk ‘1""".'\'_v"‘zv.'.-q'_"“"".r."\‘r' e, e, T, T e e e
. R N R Lo NSNS e FR SN N

El19

enter, cn cone line and separated by a blank,
ald-base ang modulus to bhe used. The

iteld-base should be a decimal number and the -

modulus shouwld be an octal number.

4 23

rFlease enter tne number of channels to be sent

by the transmitting ncae. This should be a

decimal nunber.

10

please enter the number of channels active at

the receivers node; this should be a decimal number.

-

oNFE matris for 3 out of 10
zrhann2ls over GF 2%#%(4 mod 2T is:

ol 00 D0 DD DO D0 00 14 05 10O
Sl D R0 ) 00 OO 00 04 12 17
Pol g S G O 00 D0 01 01 01
el el o DL OO e Wl 10 17 06

MO QL O30 00 05 12 16
00 Q1 00 11 15 06

QD 0D 01 08 17 17

s G )

0 0D 00

slease enter, an one line and separated by blanks,

tire numbers of tne I channels active

at the receiving nade., These numbers should be decimal.
158

Decoder matrix for the active channels listed above is:

01 QO Q0 QO QO OO QOO OO0 OO0 QO
10 01 00 Q0O 05 OO0 00 134 00 00
16 OO0 Q1 OO {7 G0 OO0 04 OO 00

please enter, on one line and separated by blanks,
the data received on each of the channels active at
the receivers node. The data should be in the form
of octal numbers, and should be entered in order of
increasing channel number.

6 6 14

the 3 transmitted cleartext waords were
woctal aumbers sdpressed in channel arder):

D6 O7 10

do you want to decode another 2 words?

(type vy ar n). )

R4

ulease enter, on one line and separated by blanks,
the data received on esach of the channels active at
the receivers node. The data should be in the form
of octal numbers, and should be entered in order of
increasing channel number.

217 S

the 3 transmitted cleartext words were
(octal numbers expressed in channel arder):

0% 04 05
do vou want to decode ancther 7 words?




pu

aﬁxr*
y

Lo 8a

Al e Yt . e, SRt AN ATE T Al sk N MR A AT A ., ..

k20

~lease enter, on one lines and separatzd by a blant

“i1e freld-base and dmodulus ho De usej Tha

~ield-base should o= a decimal nunber and tine

wadulus should be an cctal number.

427

Slzaze enter the numoer of channels to b2 sent -

o the transmitting node. This should b2 a

Iecirmal nuanber.

L
Trade enter the numsbsr ot channels active ac
IERTE TN ok Va0 NRCE-T o S Vil 1) tiniis should be a decirmal number.
L MATr1s fOr 5 out of 10
Doamiel = w0 BF R#x {4y mod 27 133
tE 14 12 0D 10
I 1< 17 0% 11
12 0T 15 O O
Wy 1o 14 oS 1313
1 04 1T e 16 05
O o= Lins and separatsd £, blanks.

v
Line= 5 cihiannels active
N3 Node. These numbers should be decimal.

for the active channels listed above is:

1S 14 12 02 10
i4 14 127 03 11
i . 12 62 16 02 05
vt G 00 0O UU 1o 14 05 13 13
S 00 00 01 04 13 06 16 Q5

= ehter, on one line and separated by blanks,

-2 data received on zach of the channels active at

“he recelvers naode. The data should be in the form
z2f octal numbers, and should be entered in order of
.nTtreasing channel number.

LTolhs 07 048 13

e 9 transmitted cleartext words were
athal pumbers enpressed in channel order):

(I1T 14 15 16
cne W&ot Lo dwecode anotner D owords?
Teoe oy gr Nl

se enter, on one line and separated by & blank,
field-base and modulus to be used. The

ld base should be a decimal number and the

1u~ should be an octal number.

4 3

~izase entzr the number of channels to be sent |
i3 the transmitting node. This should be a |
1=zimal number.

o |
[ |

se enter the number of channels active at
e receivers node; this should be a decimal number.

IHF matrix for 8 out of 10
rarnels over GF 2#%(4) mod 27 is:
.- % r““ “- \- .:\ ‘

~ e e e e .- . - « e e A . .
IETESCVR N S . . e te e PRI R T e I I ) N e e et
AR M -:‘:r'L attar”, ‘f:". PEOY. Y. PG | _!..".'.'. \..-'.'L [N -_f\!.'z.' ‘a L' ’\ “a (

b




e
X &
e,

s 56

P .
o
»

g eyt

A 2 2 A

LN

DL 00 11 17 16 04
M) 01 14 02 07 0L
“lazgse snter, oSn o
o numbers of the
=zt the recelving n
i 23 4 67 3 10
Tesgder matri Jor
s
v
0
LoD
HE SN

L

enter, an o
recel vad
ivaers node
numbers,
ng citannal
15 té&

-
—
- (i
I
o
L4

transmitted
numbers e:p

oot 12 1=
wiant
or

14 15
to dec
).

PR s YN |

Clpe

15 11 17
10 04 91

02

04

rne line and separated by blanks,
8 channels actiwve
ocde. These numbers should be decimal.

the active channels listed above is:

ne line and separated by blanks,

on =ach ot the channels active at
. The data should be in the form
and should be entered in order of
nuinber.

17 14

cleartext words were
ressed in channel order):

15 17

ade another 8 words™?

DA R GO L R S SRR GIATETAN, 20 L SRt RO L T



faele) el

T .

AN

X3

L

[
PRt

(]
)
()

Appendix F

Copy of Yeh/Reed/Truony paper
on systolic multipliers for finite filelds




- 8 »
PLAA A LA

.

R R AR

—

RO

. Ad
_‘_

[

% (XN

—'.’":.‘

PN

A

Pl PROUNSACTIONS O8N COMPUTERS. Vol C-33, N 4 ki 1984

&7

Systolic Multipliers for Finite Fields GF(2™)

=S YEH, STUDENT MEMBLR. 111,

vistruct — Two systolic architebtures are developed for per-
I-uning the product-sum computation AB + C in the finite ficld
(0 2™y of 27 clements, where A, B, and C are arbitrary elements
ol GFQ2Q™. The first multiplier is a serial-in, scrial-out one-
dimensional systolic array, while the second multiplier is a
paralicl-in, parallel-out two-dimensional systolic array. The first
multiplier requires a smaller number of basic cells than the second
maltipticr. The second multiplier needs less average time per com-
rutation than the first multiplier if a number of computations are
prrtorined consecutively. To performn single computations both
multipliers require the same computational time, 1n both cases the
architectures are simple and regular and possess the properties
of concurrency and modularity. As a consequence they are well
-nited fur use in VLSI systems.

Iudes Terms — Finite field, logic design, primitive element,
“vsiolic array.

I, INTRODUCTION

INTLE or Galois fields have many important and practical
appheations. Finmite fields can be applied to error-
crivcting codes {13, switching theoty [4], and digital
sl processing |5 For example, finite fields are used in

o construction of many error-correcting codes. Reed -
dennen (RS) codes atilize the finite field GFQ2™) of 27

crzemiss where meas a positive integer. The encoding and

oLy ulvorthim of o binary RS code reguire algebraic
potations in some tield GEFE27), rather than the usual binary
selnactic operations.

P operations of addition and mwinplication in a finite
S e quite difterent trom the usual binary arithmetic opera-
e Because of their simplicits and practical usetulness,

prrhe tinite Dields GFQ27) are considered in this paper.
“odvonoan GFE27 s bitindepeadent and straightforward.
Coao s easier than the usual binary addition. On the

ntary. multipheation in GFE2™) 15 more complex and

“t ult than binary integer multiplication.

Soveral circunts have been proposed [1]-13],16]-(8] to

dize mulupheation in GF27), Untortunately, these cir-

Joare pot suited tor use in VLEST systems, due to irregular

“routing and complicated control problems as well as a

mincdular structure or lack of concuirency Y1

fu this paper two parallel architectures are designed to

corm multiplication in GF27). In Section 1 an algorithm

sonpt reeesed January (00 1983 revised Apnd 280 19830 This work
portsbmpart by the 1S Aur Foree Ottice of Serennitie Research undet
SEOSRSOORST and o pait By NASA under Contract NAST-100)
conand TS Reed are swath the Depanment ot Blcanca Engaincening.
ol Scaehern Catiornia, Los Angelos CA 50080
Trucais - woth 0 Conmuiation: S:veine Reseaich Secion et
Ul e o Ok G Die . Pas o, CA 91109

il O30 N O 03870l o

IRVING S. REED. 1110w, 1ktE,

AND T K. TRUONG, eMBER, 1LY

ts dernved for multiplication in GF(2™). This algorithm is
mapped into the hardware design in Scctions 11 and V.
In Section 11} a one-dimensional systolic multiplier tor
GF(2") is designed. This multiplier is serial-in, serial-out.
In Section 1V, a parallel-in. paraliel-out multiy lier in GF(2")
is developed. The latter multiplier has a two-dimenstonal
array structure.

MULTIPLICATION IN GF(2™)

1t is assumed that the reader is familiar with the basic
concepts of finite fields. The properties of finite fields arc
covered in detail in [1]-[3}. In the following the properties of
finite ficlds are reviewed briefly as required.

A finite field must contain p™ elements, where p 1s a prime
integer and m is a positive integer. The linite field GF(2™)
contains 27 elements. GF(27) 1s an extension field of the
ground ficld GF(2) of 2 elements, i.c.. GF(2) = {01} Al
arithmetic operations in GF(2"y are performed by tabing the
results modulo 2.

The nonzero elements of GF(2™) are generated by a priva-
tive element a, where a is a root of o primitive ureducible
polynomial Frvy = x™ + f, x7 " o v fvo- L oved
GF(2). For example F(a) = x* + 1 + [ iv one such pring-
tive irreducible polynomial for GF(2°).

The nonzero clements of GF(2™) can hp rqu“um das
the powers of a, ie., GFQ2™) = 10,0’ .-+ o -
"= 1) Sinee Fla) = 0,a™ = 4, ;u"' e
na -+ fio Theretore. an element of GF(2™) can he also ex-
pl&\\td as 4 polynomial of « with degree less than m.
That is. GFQ2"y = {an @™ "+ - = uja * w, u -
GF(2) for O = i =2 m = 1} In the following discussion,
the polynomual representation is used to represent the finte
tield GF(2™).

Let A = 4, ™ ' + + aya +a,and B - b
a” 4 t b + by be two elements in GF(2"y. Then
A+B =8, a™ '+ + Sia + §5,. where § -
a, + b tmod 2) for 0 = i = m — 1. Therefore, addition in
GF(2') is realized casily by m independent EXCLUSIVE-Ok
gates.

Suppose P = p,,a™ !+
ofAand B.i

]

© + pa + pg s the product
¢..P = AB. P canbe written as follows [ 1] 3:
-} m-1
2, (Aa' )b, = 2 ( > a,,"a")b‘

Lo n

m ot m-1
hl al
B }_, ( z, a’.f'.’n)a" th

N BR 1)

BRI 4 3




, Aa* =
From
+ a‘:‘—‘)bm-z +

where @' is the coefficient of a” in Aa’, i.e.
ailamt s gta+ray forO0sksm - l
(1), one obtains p, = &by + Vb, + -+
@l Vb,

The computation of Aa* can be performed rccursively on
kifor 0 <k =m— L. Initially, for k = 0, Aa® = 14, i.e.,
a’ =g, for0xnspm—-— L Furlsksm- l.

m-|

‘ f W k-
Z ak Hgttt = a: :am + ‘\_‘ a"k-ll\an.
n=0 n=i

(2)

+ fia + finto (2) yields

= (Aa" ')

_fm_’a l+...
m-1

Aak = >_‘ (a(k~.i “+ a«k i )an + al::ll)i’ (3)

n=l

Substituting a”

From (3), one obtains

al = gk + ak)f, forlsn=m-1

ay = u,‘, fo. (4)

Fig. 1 dllustrates the step-by-step operations of a procedure
for performing P = AB + Cin GF(2%). In Fig. 1 4, b,. ¢a,
t..and p, ure the nth bits of Aa*. B, C, F, and P, respectively,
where F 1s the primitive irreducible polynomial. py’ is the
partial sum of p,.

In the following sections this procedure is mapped into two
svstolic architectures. The above symbols (e.g., F. P, @) are
still used in the following scctions.

I11. A SERiAL-IN, SERIAL-OUT SYSTOLIC
MULTIPLIER FOR GF(2™)

In this section a one-dimensional systolic array is devel-
oped to compute P = AB + Cin GF(2™). A similar structure
was proposed to multiply the usual two's complement binary
numbers [10]. For simplicity in description the ensuing dis-
cussion is himited to the particulur finite field GF(2¢). In
Fig. 2 this architecture is shown for GF(2'). The primitive
irreducible polynomial is F = fie® + fia® + fia + f;. lnput
d, receives the b, of B. The nth bits ¢,, a,, and f, of C, A,
and F uare received scrially at inputs eq. g0, and hy, re-
spectively. Two control signals, START and END, are used in
the design. Inputs ry and £ receive START and END control
signals, respectively.

Output ¢, serially transmits the nth bit p, of the result P out
of the system. The order of the inputs and outputs are also
shown in Fig. 2. The flip-tlops associated with inputs £, and
h.. are used for the purpose of synchronization.

The circuit of cell L, is shown in Fig. 3. The operation of
flip-tlops in this system is synchronized implicitly by a clock
signul. In Fig. 3, whenr? = 1,4, = g¥ at the next time unit
(through switch SW). When r* = 0, 4, sustains its value.
Two principle operations of the system are the following:

€., g er

OF = ity = Eer) {5)

IFEL. TRANSACTIONS ON COMPUTERS, VOL. C-33, nov 4, APRIL 1984

)
I STEP
NUMBER

i
!

—— + ———
i
|
¢
]
l}

OPLRATIONS

10)& (0) - W
PJ a

i i Po T by TRy ey
s O S e e e ame o .
Fig. 1.

A procedure for compuung." = AB + C i the e tiel l(il"':“.

where A, B, C, and P are clenients of GF(27)

5§
1T

“9€1€2¢3 5
19
61 :@

’

5

:

-

FF: Plip-Flop
Fig. 2. A serial-in, serial-out systolic multiplier for the fimte ficld GF (2%

t O

FF I

o

%
1

r

v ¥F
n
! FF
h.

Fi. Filp Plop, SW: Swito®
XOR: Exclusive~ok

tig. 3 The circuit of the cell L, used in the mulupler showpm bz 2

P AL S P S VA




it el dls SYSTOLIC MULTIPLIERS FOR FINITE FIBL DS

TABLE |
Soat PROPERTIES OF TWO SYSTOLIC MULTIPLIERS FOR GF(2™)

£y T

e T y
T alriplicr The multiplier; The multiplier .
ey T in Fig. . in Fig. &
EE - P LI -——t
2 |
Lanoer of bastc cells ' " ! m" '
- B el
oulevetput Fornat "2 serial . pa-allel J
' |
R i s
Mirdeawn wverace time oor ' ' !
i "t t 1 !
Tarputation (time wnftsd : 1
|

e e ——

”
Neluv botween tirst input l 3 f.m / '
and tirst output of a <n (3= 1f tnput !

cooutatien (time wnlts) |

output delay i
also counted) -‘]

svarter o ocontrol =i

where O =4 -2 3,5 denotes EXCLUSIVE-OR operation, and
the backwards urrow denotes the substitution operation.

A comparison of the procedure in Fig. 1 and the structure
i Figs. 2 and 3 yields the following facts. The signal u, in L,
v equal to i’ in Aa’. The signal g* is equal to af in Aa’ for
wme a. The signal e} is equal to the partial sumof AB + C.

Fhe multiplier in Fig. 2 can be generalized to the finite
1ol GF2™) by simply concatenating m identical cells. Extra
fcgisters and control signals are required if the b,’s are in-
putted sertally into the system in the same order as the a,’s.
Some properties of this multiplier are listed in Table 1.

iV, A ParatbLbi-IN, ParalieL-Outr MULTIPLIER FOR GF(2™)

I this section a paralicl-in, paraliel-out, two-dimensional
systohic array s designed for performing P = AB + C in
2% A similar structure was designed (11] to perform
sudtiplications in standard binary arithmetic. The discussion
i this section is again limited to the finite field GF(2%). An
stiatogous development can be constructed for any other
tite tield GF(27). Fig. 4 shows this multiplier for GF(24).
In Fig. 4 D7 denotes an y-bit shift register or delay device.
Baputs o', 6,078, g, s and A, 's receive in parallel the
posotBoesof Coa s of A and f,'s of F. respectively, for
0 n= 3 The p,'s of the result P are transmitted out the
<setem in parallel from outputs ¢, J's for 0 = n = 3,

Phe circuit of a basic cell L,, is shown in Fig. 5. This
citetit iy similar to the circuit shown in Fig. 3. Two of the
ormary operations of a basic cell are the same as the oper-
Aoy given in 5), One may use degenerative versions of the
crewt in Fige S tor the cells in the bottom row and the
rohitmost column of the array structure in Fig. 4 since some
iputs and vutputs of these cells are not used. Note that the

renal g, is equal to the @) of Aa*. The signal u, , is equal
gt of Aat for 0 = 0 = 3,

Some properties ot the multiplier in Fig. 4 are also listed
+ table L. The multiplier in Fig. 4 is “programmable™ since
e chasizeable. I8 s fixed or seldom changed then the
s can be sumplitied by chiminating all flip-flops associ-
cod wath /I.

coreguired,

For such aocase buttfers and Tong wares may

p
L

‘- —9 . I I’., — — b
— - . - -
171 | IR T 1
. & -
0™ w-r it wnif: frginter
Fig. 4. A two-dimensional parallel-in, parallel-out sy stolic

multiplier for the finite field GF(2*).

! B JTTT
1 | ™ [
K

! J (23 L_‘ ;;—\p .

J S -1 _

‘i, e
I RS

- b ) ' R
1 [ i +
.
[N Paip-Tin, ¥ [PV
Fig. 5 The circuit of basic cell £, used in the multipiier showian fip &

V. CONCLUSION

Two parallel architectures are designed for performin:
multiplication in the finite field GF(2™) of 2" cleinents. A
comparison between these two multipliers is listed in Table 1.
The multiplicr in Fig. 4 can be viewed as a “time expansion”
of the multiplicr in Fig. 2. Both multipliers are suvited well
for VLSI systems because of the simple control, the reguiar
interconncction pattern, the modular structure, and finally
the complete concurrency of their operations

) ( '.‘- .ﬂ...'.-! ‘..‘.-"‘\--.'--._:.'_..:.\(‘:- .'...'_....- \’\-".:\ 'nf'\"*"'-. Ry .‘.~ W _.u._-q \.-'F$‘ -« ~’- ‘6":—"‘ ‘.:.\:. ~‘\o.\:.\;‘._.



s

volen d‘

i
g

X
L=

‘I
)

pro—

(]
.

L3
A

/'t‘;‘f

o

AP ("

RN

; I.b.\J

,

AP A AN

N

\ T, A 5.:—.\/... A

.

rlLS
a o« 0%ela

[}
b

i

ACKNOWLEDGMENT

The asuthors would like to thank the referees tor several
usclul suggestions.

REFERENCES

(1] P ) MacWilhiamis and NUJL AL Sloare, The Theors of Error-Correcting
Codes  Ansterdam: Noah-Holland, 1978,

121 W. W, Peterson and E.J. Weldon, Jr., Error-Correcting Codes,

2nd ed.  Cambridge, MA: MIT Press, 1972

E.R. Betlekamyp, Algebraic Coding Theory,  New York: McGraw-Hill,

1908

14} B. Benjauthit and 1S, Reed. “Galois switching functions and their
applications.” [EEE Trans. Comput., vol. C-25, pp. 788, Jun. 1976.

(51 1'S Reed and T.K. Truong. “The use of finite ficlds to compute
convoiutions,” [EEE Trans. Inform. Theory, vol. IT-21, no 2,
pp- 208-213, Mar. 1975,

6] T C. Banee and D.1. Schneider, “Computation with finite fields,”
Inform. Contr., vol. 6, pp. 79-98, Mur. 1963.

7] B_A. Laws and C.K. Rushforth, “A cellular-array multiplier for
GF(™)." IEEE Trans. Comput., vol. C-20, pp. 1573-1578, Dec. 1971,

{8} R.G. Gallugher, Information Theory and Reliable Communication.
New York. Wiley, 1968,

197 H.T. Kung. "Why systolic architectures”” [EEE Computer, vol. 1S,
pp. 37-46, Jan. 1982.

{19] R.F. Lyon. “Two's complement pipeline multipliers,” /EEE Trans.
Commun.. vol. COM-24, pp. 418-425, Apr. 1976.

11 ) V. McCanny and J. G. McWhirter, “Completely iterative pipelined
multiplier wray suituble for VLSL” IFE Proc. G. Elecironic Circuits
and Svetems, vol. 129, no. 2, pp. 40-46, Apr. 1982,

R

C.-S. Yeh (879 was bom in Tainan, Taiwan,
on May 13, 1951, He received the B.S. degree in
clectrival enginceng from National Cheng Kung
University. Taiwan, in 1974, the M.S. degree in
electronics from National Chiao Tung Univensity
in 1976, and the M S.E.E. degree in computer engi-

. necring in 1981 from the University of Southern
- California (USC). Los Angeles, where he is now

a Ph D. candidate.
e‘ Since 1979 he has been a Tesching Rescarch

1EL TRANSACTION: ON COMPUTERS, VO =33 NG 4, aPRIL 1984

Assistant at USC. His research anterests are computer systems, V0S! architec-
ture, and digital signal processing

Irving S. Reed (SM'6Y9 173, was bor in Scattle,
WA on Nosember 12, 1923 He recenved the
B S. and Ph.D. degrees in nusthematics from the
California Institute of Techinology, Pusadena. in
1944 and 1949, respectively

From 1951 to 1960 he was associated with Lincoln
Laboratory, Massachusetts Institute of Technology,
Lexington. From 1960 to 1968 he was a Seuwn
Staff Member with the RAND Corporation. Santa
Monica, CA. Since 1963 he has been a Protessor ot
Electrical Engincering and Computer Science at the
University of Southern California, Los Angeles. He holds the Charfes Lee
Powell Professorship in Computer Engincering at USC. He is also a Consultant
to the RAND Corporation, the MITRE Corporation, and a Director of Adaptive
Sensors, Inc. His interests include mathematics, VL.SI computer design,
coding theory, stochastic processes, and information theory.

Dr. Reed is a menber of the National Academy of Enginecring.

T. K. Truong (M'82) was bom in Cholua, Vietnam,
on December 4, 1944. He received the B.S. degree
in clectrical engincering from the Natiaial Cheng
Kung University, Taiwan, China, in 1967, the M S
degree in electrical engincering from Washingtun
University, St. Louis, MO, in 197, und the Ph D
degiee trom the University of Southern Californug,
Los Angeles, in 1976,
Since 1976, he has been with the Conununication
«%  Systems Rescarch Section, System Lnginevniny
Technical Statf of the Jet Propulsion Laboratony,
Pasadena, CA. Also, he is currently a part-time Rescarch Suientist athe
University of Southemn California, and a Consultant to the Department ot
Radiology, Memorial Hospital of Long Beach, CA . His rosearc interests wie
in the areas of mathematics, VLSI architecture, codiy theory, Xeray recon-
struction, and digital signal processing.

oy o

Yy VT S S S R G S Sy




Gl

Appendix G
Copy of Bloom paper on threshold schemes

\..-....(\-.\u. "\(\Eﬂ o ..-ﬂ. -.- 4 A .\- (AR R S 8 ,.;t Ty .f.hvc [ L N .M-.-o,fuw-. LA s ,.-;4\1&.\ !\-v.v AN A ﬂ 104 -“\»~11 ) -.‘ g ) -\..o\v‘ n\tl. \0 ..

S, ., 0y - - N R - 34 U .



2

L J 4

o s

S,

ey

¥
A
..0

>

W bl

:"‘:‘) :.I 1

a

AHRAS AT

&
5
-

1y b RN

s s e

- -

G2

A Note on Superfast Threshold Schemes
John R. Bloom

Abstract: Thresheld schemes, or key safeguarding schemes,

are innovative new approaches to cryptokey tran-sfcr or securc
data storage problems. This note outlines a class of schemes
which approach optimality of speed and simplicity. The schemes
are based on linear maps over finite fields. ‘These schemes

are the proper generalization of Vernam pads.

Key words and phrases: privacy, security, cryptography, messaus: p.ssing

CR Categories: 3.81, 5.6, 5.25
A threshold scheme is a method for producing, fror a message o,

n o shadows" Yy e Voo with the propertices that:
1. Any r shadows suffice to determine .
No r-1 shadows give any information about .

ihreshold schemes have been discussed in papers by Blakley [2],
Shawmiv {5, where many applications are discussed, and Aswuth and Sloom
{1}, where a class ol schemes including Shamir's is discussed, and tur-
ther cross checking capabilities are also introduced. This paper intro-
duces a class of schemes of optimum speed and simplicity when the es o
lengeh is large compared to  r.  These schemes arc the gencralization of
Vernam pads,

To generate such a threshold schene, pick Ve Yy e vn vectors
ia 1Y se that no r are lincarly dependent.  This can be done i
i n, nd conjucturaliy for no smaller . (See [3] pp. 323-328).

Considering the message x and the shadows Yy to be elemcuts

of v, construct a lincar map L from F to HH with LVO =
4




DA B B S A% i S M B B AR el snit and g

i
Gl i
2 b
‘ {
& .
> :
o) :
¢
W and Lv Lv randon Letting y, = Lv i =1 noooie has
< .ll’ Y N r—]_ . . P )’i - i, Y (G291 & s
A , . . . . ' i
( produced a thresheld scheme . Property 1 ois satisfied sincee any r v, &
i
3 .r y e
> span ¥, and property 2 is satistfied since o is not dependent on any
N 1
~ r- 's
\: l Vi . 1
>
L] - .
In practice once picks q as small as possible and reduc:s = to a
N :
- sequence m messages of size q,
" :
o 1
S 1
: Proposition: To produce a sequence of m shadows for fixed 1 requires J
L
at most mr additions and mr multiplications. To rcconstitute the
3 r3
scequence of m x's requires at most 5 + (m+1l)r additions and -3—*-(m+l)r y
' )
{ oy . . : ) . . ) :
multiplications, The algorithm meeting these roquircments is described )
B
LY I)\']U\-_',
8 :
N
¥ r—-! [
1 . ) . . ,r . ot r
; For fired i, there is a vecter w ¢ I with v, = « - w. v _,
»2 q L 3=0 "jj
' . l‘fjl
one can construct y; T Lv, from the relation Lvi = Y w,lhLv,. To ‘
' j=0 :
. . | 1
‘ reconstitute x rom . eeey V. one solves nooou,v, . =V tor
) ceons fre yll’ S H Vi 0 9
~ ) : )
. . L
o ti.w vevtor u by Gaussian c¢limination and forms x = LVO trom the 1
o r . . o 1
relation Lv, = £ wu,y.. . This algorithm clearly satisfics the op counts 1
: 0 i=] J71j
‘,‘ J
. . A
N given above. }
X 4
9N . 3 . ‘
o Since q can be chosen extremely small in many applications, two ]
- 4
savings are possible. Tf the u's are stored, no Gaussian climination l
. . . , \
Es is necessary., If a table of Zech's logarithms is stored ([3], p. 91) the 3
- .
. H 3 1 » » ‘
1Y cncoding and decoding algorithms reduce to r additions and r  table 3
- i
Y :
- look=ups. ‘
ﬂ( For large m, these threshold schemes take  (2+49)r  operations, |
[} N
A
" conjecturally, one cannot have threshold schemes requiring (2-)r :
oA A
: i
- "
® :
8, {
. '1
1 :
" Y
‘
. {
— L]
LJ
. a
A\ |
4 :'

e L e A ] o W . ; . e et o a e e
e Pt B sl o o ol S e S L R TR L |




operiations for large r, n. An clementary result is the followi.,.

Proposition: A threshold scheme cannot be decoded in fewer than v

S operations.

i'roul,  Since a threshold scheme requires that no r-1 yi's deternine =,

iﬂj w1 r shadows must be used.

[he detfinition of a threshold scheme requires that cach shadow
carry as much information as the message  x,  This message expansicia can
e overcome by using a pseudo-threshold scheme. All existing schemes nave
<uch variants, only the variant of this paper's superfast scheme is out-

: I“L'd.

) L . a4 .
z; PLeR V—l’ ceey VO’ ey Vn in Uq so that no r  are lincarty
L] N

SN Joependent. Form a btinear map L with kv ., = »x, tfor | =0, ..., F
e =) ]

X are messages or parts of a message .

caere N ooor o oand  x cee s
: 0’ * R

! bt v, =lv, i =1,...,n. All other details are as beforce.
i i

For these schemes one has, for cach i that no r-1 yi® vive

any information ahout X, and this may sufficce for many applications,

3 ) . . .

AN bhat -1 y; s do give information about the tuple (xO, e xk).

~

2N

35; T ossense, piven r—=s yi's, if one correctly guesses s of the AP
(X0

-

the rest follow,

o

*aWaw . » ‘e .Y
BASSURT AR WM LMl b ¥ N 6Y, My ofie B




L a—

YN YA

oy

‘N
{ S LA N

o >
2 P

-

4

l" Al A "‘r\r’\

(R~ & A vy

g e oy A

b

b A

(1]

(2]

References

A=zmuth, C. and Bloom, J. "A Modular Approach to Key Safepuarding"

Blakley, G. R. "Safeguarding Cryptographic Keys', Proceedings of
the National Computer Conference, 1979, AFIPS Conference Proceedings,
vol. 48 (1979) pp. 313-317.

MacWilliams, F. J., and Sloane, N.J.A. The Theory of Error-Correcting
Codes, North-Holland, 1977.

shamir, A. "How to share a secret", Communications of the AC!, vol.
22 no. 11, (Nov. 1979) pp. 612-613.

T TR,

r 1~ ¢ - AL & ~Q$-~- X -‘- 3] “ » ‘ _I ‘-( '(-'-" -

Vot *.\"'. RS

bnsledinbash Bl ten ook

Al b




: N ¥ S e T e TR W T T F v T=m i RSN A R AT A DA 2 AR PR IR, DA S A S Sl A TTRTTIITETNY
. H1 J
o) "
& .

. 4

A
. .j
4 P
. £
d. .J
: 4
- 4
4

,~
- N

Tt

Appendix H

Program for encoding procedure
(including Stages 1, 2 and 4)

R A

i A A

P LA

SEDEONSE |

eyl

b
-
o
L4
-
]
(]
"
L 4

S, SR Py T A T T A e A t A T T et T A AT AT e Lt A ettt e e el
) ft.()%;iﬁ?.f;f-(ﬁRLfJf‘f.¢L£.fLJ;;;J:f:,:f:sgf;f;frfif;y;;;ﬁ,f::;;;g;f'{:flc:;'"s“f
NG




P .'.'-"_."."1

f;j Fage 1
Ty - 05-24-34
- OB217:17
( > i Lines Souwrce Line IEM Fersonal Computer Fsscal Compiler Y1.006
- pa i program enf (input,output); '
L 10 7  const WORDLENGTH = 163
-:ﬁ 10 4 MAX INDEX = 32%
- 5
19 = type mat_row = arrayll..MAXINDEX] of integer;
o L 7 matrix = arrayll..MAXINDEX] of mat_row;
Q} 1o 3 channel _array = arrayll..MAXINDEX] of integer;
0 7
1 :~' 1m0
\ i1 { the TWO_TO_THE function makes up for the lack of a generalizce
. 11 d
ﬁ: 12 exponentiation operator in standard Fascal. It returns two
}#‘ 1z traised to the power of its caller—-supplied argument.
' 17 ¥
2% 19
i 2 i3 runction TWO_TO_THE (argument : integer): integer;
A ie
;4 it 17 var accumulator : integer;
3: o 13 index : integer:
W 19
ué 20 20 begin
o 21 =1 accumulator := 13
. i ? for index := 1 to argument do
'f, &1 accumul ator := accumulator * 23
P = Il TWO _TO_THE := accumulator;
X5 10 25 end:
‘:?
o Zz-mtab 29 Offset Length Variable - TWO_TO_THE
- 2 14 Return offset, Frame leng*h
oy - 6 2 (function return) Integer
:ﬁ - Q 2 ARGUMENT tInteger ValueF
~ - 10 2  INDEX t Integer
e - 3 2  ACCUMULATOR : Integer
& :
~ Zo
E '.;. P
N 28 { the READ_OCTAL routine; this routine allows the user of
§$) =7 Ehe program to input his values in octal rather tham o
‘2‘ S0 decimals; it replaces the Fascal standard "“read" routine., °
AN =1
e 0 32  procedure READ_OCTAL (var total : integer);
M 33 "
3 20 34 const BLANE = * ‘3
N e
0y d
¥ Z0 Ih var inchar : char;:
13
SZad ISTAL
N
1)
q
0
R)
A
v

|

MY

P L TP AU A NP T TR T N L S SR SRS ‘.‘j
WCRICIER PR SUIONRE AL 14 ) SO U AR OOV R A, YRy

P, A

Al
d




- - A
‘.).'f‘.l'.:'.. ‘..’
P A0 I A

e
“*a n

AR

e
DN

- ) -~ a«_ 8 s
Y [ % S
-f‘.f.':'

,l‘l
i)

[4
alh

SN
a

XXX
~#}g

'y

(A
'n’fi’f LA

frinri

75 \} L P T

T

s

:L)
L

LA
(AT AR

AR
0
&

{

Jia IC Line#
v~
=7
8

20 A
=i 40
=1 41
32
21 473
21 44
45
-1 445
o 37
P 43
"'.f- . -';\
S0
: St
- T
L) -t
LSl
o
=
53
oY
=y
P v
0 53
) 59
Ao
— a1
=0 52
= &3
54
A5
=0 bb
- 2
=1 -Y=]
21 7
e b
PR 7
. by £
PRipGR /=
e -
b -t
22 74
21 75
76
A+ ITE_OCTAL

.a" '-". 'o T v e '- 'b"l "14'-' BRI AT -'.

Fage =
- NS-24-84

Q0:17:19
IBM Fersonal Caomputer Fascal Compiler V1.00

Source Line

begin
read (i1nchar)g;
total 1= O

while (inchar = BLANE) do
read (inchar);
while nat (inchar = BLANEK) do beqgin

total := tatal * 8 + (ord(inchar) — ord(’'G )Y

read (inchar)
end
2nd;
Cfr==t Length Variable - READ_OCTAL
- 2 8 Retwrn offset, Frame length
- O 2 TOTAL :Integer VarF
- 5 1 INCHAR sChar

{the WRITE_OCTAL routine; it replaces the Fascal standatd

"write" routine and allows the praogran to report its /|
output vxlues in octal rather than in decimal. ¥
procedure WRITE_OCTAL (number : integer;
field_base : inteqger );
var outbuf 3 array [1..WORDLENGTH] of char;
temp ¢ integer;
index : integer;
begin
£om dmdey: 1= 1 to WRDLEMGTH Ao outbuffindes] 1= "0
index := {3
while (number *» 9) do begin

temp := number mod 3:

outbuflindexl := chr (ord('0’) + temp);:
index := index + 1;
number := number div 8

end;

Ve P G0 Gt A T R, RO AN A R IS S OB RS Sy




-

Fage 3
05-24-24
Q017:22
Source Line 18 Fersonal Computer Fascal Compller V1,00
temp = t((rr1eld_base + 2) div 3
1f thamp - 1) then temp :1= 1;
i+ (temp = (index - 1)) then temp := inuex — 1
for inde. :5 temp downto 1 do write(outbuflindexl);
write(’ |

2rids

Offset Lesnagth Variable - WRITE_OCTAL
3 0 Return offset, Freme length
) NUMEER P integer
24 TEMP rinreger
26 INDEX :Integer
e FIELD_BASE tInteqgsr
CUTEUF tArrav

e

o

O~ Fi kbR

—

The ADD function returns the logical xor of 1te two caller-
suppli=d arguments. This 1s addition over GFin) for anvy n. 3

4

function A&DD (terml intzger;

terml 1 integer j: integer;

begin
ADD 1= ( (terml or terml) and (not(terml and termZ))
2nd;

Svmt ab : Of+set Length Variable - ADD
4 10 Return offset, Frame length
8 2 (function return) : Integer
2 TERM1 tInteger ValueF
2 2 TERMZ :Integer ValueF

(8]

The MULTIFLY function performs multiplication over GF(n)
WUy S e SwaiE vaRPElied cwdawlus and rebocas Lz !

Lz omoult

of the multiplication. H

function MULTIFLY (factorl
factorl
modulus
field_base

integer;:
integer;
integer;
integer ): integer;:

MULTIFLY




'-‘v‘l'v‘-‘."“ s

AR R

“

I

3
L 4

¢
LY

‘e

-

., ‘; ‘i Ny .l'

agl

VX

—
Pl

S AR
Ay g Sy Ay 4 %

. }- "L,K.

LY d
s

Xy

F s

o

)

&

»
* A

.

D,

»

e dl

Zvintao

0w

-
'

[ T = J Wiy SPupy STy

[ e S R ST SR O B A R (O O Y

LIRS Y S R N R

-
pag
P

141

H5

Source Line

var  1ndex : integer;:
answer ! integer;:
bagin

answer 1= 03

for index := 0O to

beqgin
answer 1=

et
=

answer *

1f (( ffactorl
div TWO_TO _THE
then answer := ADD

it o

then answer := ADD

ends
MULTIFLY :=
ends;

Offs=t Length

- 3 20 Return offset,

- 12 =2 (function return)
- 0 2 FACTOR1

- 14 2 INDEX

- 16 2 ANSWER

- 2 2 FACTORZ

- 4 2 MODULUS

- b6 2 FIELD_BASE

{ The INVERSE function.

returns the

(field_base -

(answer div TWO_TO_THE

IBM Fersonal Computer

1

mod TWO_TO_THE
(field_base -
(answer,

At (s 2 FRRTATETTI g
Fage 4
- 0S-24-34
00:17:24
Fascal Compiler “Y1.00

do

(field_base — ind=z:)?
(index+1)) 3 = 0

factordd

(field _base)) = O}

(answer,
TWO_TO_THE

Variable - MULTIFLY
Frame length

element ‘s multiplicative inverse.
implementation iz very €low & primitive—— it

(field_base) + modulus)

Integer
tInteger ValueF
:Integer
: Integer
: Integer Valuef
tInteger VYalueF
: Integer ValueF

It accepts a field element and

This
shonld he

replaced by Davida“'s inverse routine or some other fast

implemnentation at the first

function INVERSE ( element

field_base

modulus
var inde:x ¢ integer:
answer @ integer;

cpportuni ty. z
: integer;:
: integer;
t integer ): integer:

{

I .!'-.I...\ -':‘u':‘\":.-\.‘!AJ




TSRV AN

K
.
Cas R

v &

Jatans
WS

;5

T

5

AL
N

4
5

7y Qb

A
&

e

ALY Wy
}¢?§?5U

a

N

:

ek

142
147
144
145
1446
147
143
147
150
191
132

P =g
4ot

Line
squares

Source

begin

answer = 13

IBM Fe
integer;

squares := element:

Tor index 1=
beqgin
squares
ANSWar :
=nds:

INVERSE

erd g

Offset Length
— \f) ( 1
- 1o 2
- ") 2
- 12 2
- 14 2
- o 2
- 3 2
- 16 2

rsonal Computer Fascal

Fage o
24-84

GO 17:27
Compiler V1,00

. 4:;5._

to (field_base - 1. do
MULTIFLY (squares,sguares,modulus . fi=zld_fhase:
MULTIFLY (answer,squer=2s,modulus,fi=la bass)

TE answer

Variable -
Raturn offset,

(function retuwn) :

ELEMENT
INDEX
ANSWER
FIELD BASE
MODULUS
SQUARES

divisor,
takes the inverse of the divisor,

INVERSE

Frame length

Integer
: Inteqger
:Inteqer
tintegsr
:Integer Valocs
s Integer VYalueF
tInteger

{ The DIVIDE function performs Galois—field division.
it accepts dividend,
(in that order),

and field-base
anc

modulus,

multiplies the result by the dividend.

furniction DIVIDE

YA divisor _iny

divisor _inverse :=
= MULTIFLY

DIVIDE :

R S L A R S R S L LR

ErsEe 2

( dividend
divisor
modulus
fimld_hase

integer;

INVMERSE

modulus,

(divisor,
(dividend,

.~-

oA ;'(. \:\ s \.. E : \:\ \!\t-. \}\‘_5} H

integer;
integer;
integer;
intean- Y

(k= 1s P ol

tield_base,
divisor_inverse,
field_base )

moagulus) g




o
o

o

A
CAAY
. fA s

P

” _l' S
2

&d'n‘ "

X
..J.'J‘.

;. - ryy )
L P 4 &
‘27" e‘ ’ ‘v‘t’t" 'f‘.‘?.&l‘.'f."

l'l‘l"‘l
PLRNEN
[ A

|

Lt i b
B  SCALS
.“l.‘l"l‘.l' -‘.A‘.

12

X

x‘: A
LT

-4
s 4

ks

17

aource Line

IBM Fersonal Computer Fascal

Fag= &
y 05-24-84
0D 17: 30

Compiler

1o 177 ends
SomLAab 177 Offset Length Variable - DIVIDE
- 3 16 Return offset, Frame length
- 12 2 (function return) : Integer
- 2 2 DIVIDEND :Int2ger
- 2 2 IVISOR :Integer
- 4 2 MopyLls :Inteqger
- & o FIELD_EBASE tInteger
- 14 2 DIVISOR_INVERSE : Intager

1 The COMSTRUCT VAN routine.
squar 2 vandermonds matrix

This procedure constructs
with the dimension supplied

calling ~outine.
20 procedure CONSTRUCT VAN (var wvan ! matrixg
20 37 n t integer;:
Zi) 134 fisld _base : integer:
20 187 modulus : integer )3
183
20 182 var row : integer;
20 190 column : integer;
=0 191 exponent : integer;
20 192 index : integer;
20 53 temp i integer:
194
20 195 beqin
134
21 157 if (i < 3) then writeln ('van dimension Z: errar )
=1 1983 2lse
=1 19= begin
ot
201 {build first row of wvan. ¥
202
n ST b S A S S A
22 204 for column := 2 tao n do
- e veurr [lJClcolumnl 1= Gj
206
207 {build second row of van. 2
208
22 209 for column 1= 1 to n do
22 210 van [21Ccolumn] := 13
211
212 {build third row of van. 7
COMSTRUCT VAN

s LA ATV S TN A T T AT

e e T A AT AN T g

IRCHIOLONE R

V1,00

valuesF
ValueF
ValueF
Valiuer

o w
<2
r+
g
i}

o




e e T L N e W TV N S VL V. T VL V.V C T L LS T _\7. e, SACASA A EACAE GRS AL O :."*;'—;‘_:rv" A f-.;‘-.'--"‘_!

SO HS

.

o

iﬁ Fage 7

j\¢ - 05-24-34

b O0:17: 37

(i sz IC Line# Source Line IBM Fersonal Computer Fascal Compiler V1,00

NEN 213

o 2z 214 van [31011 = 13

I 2 215 van [31021 1= 2;

o Iz 216 for column := 2 to n do

K 22 217 van [3Jlcolumnl] :=

=2 MULTIFLY (van [J1Lcolumn - 13, 2,

e 22 modulus, field_base )s:

g

o {build remaining rows of wvan.3’

L b if (n » 3 then

i -2 for row := 4 to n do begin

F 2% van [rowl[1] := 13

IS 3 for column := 2 to n do

O 23 van [rowllcolumnl :=

o 27 MULTIFLY (van L[raw - 1l{columnl, van [Z1lcolumn

Y 23 1,

FV 1 modulus, field_base

oA 237 '

SO 27 end

b ('.,‘

‘ﬂj

o 2z end

i 1 end;

-’\

NN ot ab 234 Dffset Length Variable - CONSTRUCT_VAN

oS - a8 32 Return offset, Frame length

;Q - 0 2 VAN tArray VarF

M - 2 2 N :Integer YalueF
- 12 2 ROW :Integer

e - 4 s FIELD_BASE tInteger YalueF

i{ - 6 = MODULUS :Integer ValueF

7 - 14 2 COLUMN : Integer

S - 18 2 INDEX : Integer

o - 20 2 TEMP : Integer

. - 16 2 EXFONENT : Inteqger

»,

L)

S JERT.)

ﬁQ 237 ¥ the BUILD_ENF rcutine. It accepts the modulus and field-base

Ak 233 desired by the user and the number of channels to be

i 239 transmitted and produces a CODING-NORMAL-FORM matrix (enf).

?. 240 This matrix is (transmitted) X (transmitted - 2), and is

GQ 241 gotten by column-reducing the first (transmitted - 2) columns

'f\ 242 of a (transmitted) X (transmitted) Vandermonde matrix so

‘ﬂk 247% that the resulting matrix is upper-right triangular.

.J\

' CTHETRUCT VAl
.." :

£

4,
o«

}i_‘;

-
L N

[N
L]

g

A I A R 5, L R g AT AT




Z1

ps b

[

[

e
—
o
-
.
-

-

B
ol

_ENF

R
I

~F
oy i =

-7

2360
".(-
-

231t
=82
287
84
283
286
237

!

Fage 3

- N5-24-34
G017 36
Sowrce Limes IEM Fersonal Computer Fascal Conpiler V1,00

procedure BUILD_ENF (var enf : matriig
transmitted : integer;
modulus : integer;
field_base : integer )i

var  coluwnns : integer;
FOWSs : integer;
reducing_col : integer;
reduced elt : integer:
T : integer;:
calumn : inteqer;

dimension integer;

begin

i

dimensicn := TWO_TG_THE (field_base);

CONSTRUCT_VAN (enf, dimension, field_base, modulus);

rows = dimensiong
columns 1= dimension — 2
for reducing_col := 1 to columns do begin

v divide reducing-col through by its lead element (we want
ones alaong the diagonal.?

for row = 1 to (rows = reducing_col) do
enflrowllreducing_coll :="
DIVIDE (ernflrowllreducing_coll,
enfl (rows—-reducing_col!)+1]lreducing_coll,
modulus, field_base):
Nn¥l (rows—-reducing_col)+11lreducing_coll 1= 1

1]

-

reducing-col (that lead element is now a 1).

znlomn-reduce to clear the row containing the lead zlament s

1¥ (reducing_col < columns) then
for column := (reducing_col + 1) to columns 4o begin
reduced_elt := enfl(rows-reducing_col)+1llcolumnl;
for row 1= 1 to (rows - reducing_cel) do
enflrowllcolumnl :=
ADD (enflrowllcolumnl,

. 5

“
e T R S LA LT



v YWXHNNAD

L)
»?

ron

vas s STRFS SIS

[4

-
-

Sy b1,

Ko 2o Sl & oL

H10

Source Line

IBM Fercsonal Computer Fascal

DGO 17:41

Compller V1.00

d
{
P 268 MULTIFLY { reduced _elt, =snflrowllreduvcing_c 1
2z 288  ol1, ]
gkt 2B< modulus, field_bease ]
273 8% Y !
gt 290 enfl (rows-reducing_col)+1l{columnl := O )
27 291 end
sz 27% 2nad
10 L7 2nd;
- A 294 D+fset Length Variable - BUILD_ENF j
- 2 6 Return otfset, Frame length
~ ) 2 ENF tArray Var
- 2 2 TRANSMITTED tinteqaer VYalusaF
~ 3 2 MODULUS tInteger valoed
1e 2 COLUMNS intease
- id 2 ROWS : Intega:
- 20 2 RDOW rIntager
- =22 2 COLUMN : [nteqger !
- A 2 FIELD_BASE :Integer ValusF ]
- =4 2 DIMENSION :Integer 1
- 13 2 REDUCED_ELT rinteger )
- 16 2 REDUCING_COL : Integer
295 4
276 ;
297 { the TRANSFDOSE routine accepts a matriy and its dimensions f
298 and produces the transpose of the matrix. ¥ {
229 ]
20 I00  procedure TRANSFOSE ( m : matrixg .
7 var m_prime : matrix; <
m_rows : integer: )
m_cals : integer )3 !
var row : integer; i
? col : integer; |
20 08 bagin
- I rofr vow 1= 1 to am_rows do
Z1 10 for col := 1 to m_cols do K
1 311 m_primelcolllirow] := mirowllcol l; .
1 12 end: i
Zymtab iz Offset Length Variable - TRANSFOSE
- 20354 2066 Return offset, Frame length .
- 2044 2048 M tArray ValueF 1
" ANSFOSE j
1
!
e O e T T e e e N T W T N R N LN N



o) fvv.‘"":-t L dad BB (et B g Tt

“‘ . Ny iy . - A - - - - . - » » . > - - hd RS - L - hd
..:.\‘ H11
n.‘,-q.~ .
Yy
2N
o ..
‘ﬁh . Fage 10
P - 05-24-34
X 00:17:44
(. = IT Line# Scurce Line IEBM Fersonal Computer Fascal Compiler V1.00
- - 2048 2 M_FRIME SArray Varf
:{ - 2050 2 M_ROWS :Intager YalueF
Y0 - 2052 2 M_COLS :Integer YalusF
. - 2058 2 ROW t Integar
s ~- 2060 2 Ccou : Integer
<N i1z
B 14
~ - - T A . . . .
%ﬁ R {the EXTRACT_SUBMATRIX routine accepts the en+ matrix, the
-\Q 15 number of channels to be transmitted, a2nd the numbar of
AN 17 channels to be receivea. It produces a smaller matric:
. I3 which will be used to construct the encode and decode tevs
pr Tie for this particular configuration of transmitted and
' 220 recelived channels. 3
.\‘. -vlr—.
f.'.: = ;:E\ v e SO MA T ;= [
L (s, =0 22 procedure EXTRACT _SUEMATRIX (var submatrix : matriag
A puty! T2 enf : matrix:
s Z0 SZ4 transmitted : integer;:
ol 260 23 ~ received ! integer;
:ﬂﬁ 20 3% field_base : inteqer )
.4,":\ -."27
rz& 328 var enf_prime : matrimg
b e 329 row : integer;
. ZZI0 calumn : integer;
AR I3t dimension : integer;
b orad 20 T2 index : integer;
-
" 20 I35 begin
¥ 21 dimension 1= TWO_TO_THE (field_base);
'l \
s . _ . .
“ﬁﬁ 21 TRANSFUSE (enf, enf_prime, dimension, dimension—-2);
NN
) - .
‘i 21 index 1= 03
e
1; o for row 1= (dimeneion - {(tranemitted - 1)) to
Ay (dimension - received) do begin
S index 1= index + 13
o for column := 1 to transmitted do
?ﬁ submatrixlindexllcolumnl := enf _primelrowllcolumnni
o3 end
ﬁk Lo end;
ARl
e S,k aby TS50 Offset Length Variable - EXTRACT_SUBMATRIX
‘.n:'..
T o TEACT _SUBMATRIX
']
™
<

<

O 2, R T T T T T A R P P




P ¥ T

ﬂE H12

L
':{ rage 11
f‘ - 03-24-84

Ca Q03 17: 49
i RS A S AT-T Qource cine IEM Fersonal Computer Fascal Caompiler Y1.00
) - 2056 4127 Return offset, Frame length

ON - 0 2  SUBMATRIX tArray Varf
O - 2048 2048 ENF tArray ValueP
s - 2082 2  RECEIVED t Integer ValueF
b - - 4108 2 ROW tInteger

- 4110 2 COLUMN : Integer

e - 4114 2 INDEX t Integer

- - 4106 2048  ENF_PRIME Arcay

3 - 4112 2  DIMENSION :Integer
W - 2050 2 TRANSMITTED tInteger ValueF
N - 2054 2  FIELD_BASE : Integer ValueF
o 23!

? 287 { th= BUILD_ENCODE_KEY builds the matrix which will be used
'O A to produce the (transmitted - received) coded channels +aor
> RN transmission. The first (recesived) channels are sent in

— 234 che clear.

-9 287

:2 20 53 procedure BUILD_ENCODE _FKEY (var encode_key : matrixg

~2 20 59 submatrix : matrixg

gl O 350 transmitted : integer:

-7 20 61 received : integer;
. 2 362 modulus ¢ integer;:

o) 20 I67 field base : integer

. T64
K i 263 var columns : integer:
s 20 166 rows : integer;

20 3567 col : integer:
20 368 row : integer:

e 20 367 reducing_row : integer;

z& 20 I70 reduced_elt : integer;:

¢ 371

4 372

Al . )

N 20 373 begin

. 21 74 rows := transmitted -~ received;

3 ot 75 columng 1= Fearnamitbads
(S 376

:ﬁ o1 77 vor reducing_row (= cows downto 2 do
'2$ 21 73 for row := (reducing_row - 1) downto 1 do begin
N z7°
I: P 80 reduced_elt := submatrixlrowl

o 22 81 ' (received+(rows-reducing_row}+11;

2 22 382 faor col := 1 to (received+(rows—-reducing_row)) do

29 22 8% submatrix [rowllcoll :=

? 27 =84 ADD (submatrixlrowllcoll,

.
o 2 (LD _EMCODE _kKEY

o

£

y -
rA

o
-

4
W edat. . ol

w, - [ 2]

AN !

Ko &

-
4
¢
J

%

"
L]
-
o
'-
..

N
N\

A NP NN P PR R0 (0 10 LG P AL RGN



b\

¥
L
AN

F
[

Mo

28

“a

el ld

al"

s 4 a9 0

022 b VR

O PAA

£ )
&' a

arl ;;;f*,

¥

Ty

P

20
20

20

=0

ZHCODE

326
97
398
399
400
401
402
AT
404
406
307

408
409
410
411
412

Fage 12
- n5-24-84
OO 17:52
Souwrce Line IBM Fzrsonal Computer Fascal Compiles V1,00
MULTIFLY {(reduced_eslt, submatrixlreducing_rowll
ccll,
modulus, field_base)
) s
submatrixlrowllrecel ved+ (rows-reducing_rocw)+11 1= 0O
end}
for row := 1 to rows do
for col := 1 to2 columns do
encode_keylrowllcell := submatrixlirowllceo'l
=nds;
Or¥fser La2ngth VYariable - BRUILD =NCODE _EEY
- 20593 2084 Feturn offset, Frame lengtn,
- 0 2 ENCODE_KEY tArray Varf
- 2048 2048 SUBMATRIX tArray YalueF
- 2052 2 RECEIVED : Integer ValueF
- 2054 2 MODULUS : Integer ValueF
- 2062 2 COLUMNS : Integer
- 20464 2 ROWS : Integer
- 2066 2 CcoL . :Integer
- 2068 2 ROW : Integsr
- 2050 2 TRANSMITTED :Integer ValueF
- 20346 2 FIELD_BASE tInteger YalueF
- 2072 2 REDUCED_ELT : Integer
- 2070 2 REDUCING_ROW tInteger

the ENCODE procedure. It accepts the number of chanrmnels
transmitted, the number of channels to be received, the

“

m,ﬂHn\uE, armd +tphe fialrd haco, T+ +hmnrm vrrovreadboe a5 amecadl oon
ey and begins reading plaintext words. It encodes thz
oglaantext words and prints them out 1Y Lnnanitz bhas

until it sncounters an end-of-file flag.

(o]

procedure ENCODE ( transmitted : integer;
received ! integer;y
modulus ! integer;
field_base t inteqger;

output_channel : channel_array ):

s “ oY DAL - o AT AT = - ~. ST NV S S L PR P R N N I T N S SR Y S
0 I . \ NV EIFN '?};f‘m.“ ' "' ), AP N P L L:E.L'.;_{-.‘.A_"LA e a"a "o o™




R
1
>
.
i Fage 17
~ - 0S-24-34 ;
% 00:17:55 4
( -2 1L Line# Source Line I1EM Per;onal Computer Fascal Compiler V1,00
. 41=
;: Zio 414 var enft : matrixs
: 20 315 enf_prime : matrix;
S =0 416 submatrix : matrix;
;: ¢ 417 encode_key : matrix;
Z0 413 decode_key : matrixg
- 20 417 cool _decoder : matrix;
< o 430 index : integer;
o 20 32 key_column : integer;
2 0 4272 row : integer;
' Z0 427 column : integer;
. 20 424 dimension : integers
o 20 425 EQT : boolean;
2 o0 426 response : char;
. 427
- 428
/ 0 429 begin
N 430
N 21 4731 dimension := TWO_TO_THE (field_base);
N 472
j: 21 43T BUILD_ENF (enf, transmitted, modulus, field_base!l;
N 21 474 TRANSFOSE (ent ,enf _prime,dimension, (dimensicn — 2))
e 21 435 writelnswriteln('ENF MATRIX———————=———e—— e ERD R
. 21 4326 for row := 1 to (dimension - Z) do begin
>y 2z 43x7 writeln;
ﬁ PEV 478 for column := 1 to dimension do
ok 22 43 WRITE_OCTAL (enf_primelrowllcolumnl, field_base)
. 21 440 ends:
i 21 441 pages
21 44z EXTRACT_SUBMATRIX (submatrix, enf, transmitted, received,fiel
. z1 44z d basea);
L. 21 447 writelnswriteln (' SUBMATRIX-——=——m—r—————— e )y
? 21 444 for row = 1 to (transmitted - received) do begi
) 2z 445 writeln;
W 22 446 for column := 1 to transmitted do
* 22 447 WRITE_OCTAL (submatrixlrowllcolumnl, field_base)
R 2 443 end;
. =1 447 page;
ﬁ <1 430 BUILD_ENCODE_FKEY (encode_key, submatrix, transmitted, rzce. .z
3 ot 450 4,
» 1 451 modulus, field_base);
e g 452 writelnjwriteln (' ENCODE KEY-——=-m—e———m—m B I
M z1 457 for row = 1 to (transmitted - received) do begi
; 22 454 writeln;
22 455 for column := 1 to transmitted do
' 22 4356 WRITE_OCTAL (encode_keylrowllcolumnl, field_base)
N
- Zr1CODE
i
A
34
"l..fs‘\"‘ . '.-‘ 'f’, ‘,-,,_',- I T A R A R g IR A RO, TN




&4 {- "‘..',:.}

s
»

.
2
AL

ﬁ’??t ?

&4

AR

[/
‘?f:' y

»

[nf’}

ARTS Mor )

Ao d
BRANSY

i

»
h Y

YY) :'."3.3' ) i

!

Jo IC

21

4

£mMCODE

HLS
Fage 14
05-24-84
00:18:04
Source Line IBM Fersonal Computer Fascal Compiler V1.00
end;
pages;

r
-

the encode routine now reads in "recei1ved" cleartext words,
generates "transmitted" - "“received" coded words, and sends
all "transmitted" words out.

[

EOT := FALSE;
rapeat
begin
writeln('please enter, cn one line, in octal and separate

writeln('by blanks, the values to be transmitted over the
writeln('transmitters ',received:2,’
for index := 1 to received do begin

READ_OCTAL (output_charnnellinde:xl);
end;

channels )}

writeln('words transmitted are (in channel order): )

for index := (received+l) to trancesmitted do begin
output_channellindexl := O3
for key_column := 1 to received do
output_channellindex] :=
ADD ( output_channellindex],
MULTIFLY (output_channellkey columnrl,
encode_keyl (transmitted-index)+1]
(key_columnl,
modulus, ftield_base)

end;

for index := 1 to transmitted do
WRITE_OCTAL (output_channellindexl, field_base);
writelnswriteln;

writeln(’'do you want to send another ' ,received:2,’ ' words

writeln( ' (type vy or n) ‘)i
readln(response)
if (response = 'n’) then EOT := TRUE;

end
until (EQT);

page




- 3 > ¥ V. T e  TeT A
ST W T e i T L AT v e T T T T T . BRI @ e el @ s S e LY D)

-

.

~

B
wty H16
195
..-'. [
RNEX ' Fage 15
DN . 05-24-84
N 00:18:14
( S50 Line# Source Line IBM Fersonal Computer FPascal Compiler V1L00
o8 459
o 10 S00 ends
\"'-
b Symtab S0  Offset Length  Variable - ENCODE
s - 72 12400 Return offset, Frame length
. - 0 2 TRANSMITTED : Integer ValueF
A - 2 2 RECEIVED tInteger YalueF
o - 4 2 MODULUS :Integer ValueF
o, - 2122 2048 ENF tArray
WY -12364 2 INDEX : Integer
o o . -
2Ny -12363 2 FOW : Integer
. -12374 1 EOT : Boolean
'#;- 12770 2 COLUMN :Integer
‘ol - & 2  FIELD_EASE :Integer ValusfF
o - 4170 2043  ENF_FRIME tArray
N ~12372 2 DIMENSION tinteqsr
N ~12376 1 RESFONSE : Char
A -~ &Z18 2048 SUBMATRIX tArTRY
“~:~ - 8266 2048 EMCODE_EKEY PArray
b -10%14 2048 DECODE_KEY TArray
'\;J -12366 2 KEY_COLUMN : Integer
o - 70 &4 DUTFUT _CHANNEL TACrARY Valuer
WA —-1236%2 2048 COOL _DECUODER TArray
Y ‘,'. 501
a0 SO
33 SOZ { THE MAIN ROUTINE. THIS CODE READS IN THE NUMBER OF
&? 504 CHANNELS SENT AND THE NUMEBER 0OF CHANMNELS WHICH NEED
%ﬁ 505 TO BE RECIEVED, AND GENERATES AN ENCODE-NORMAL FORM
Hab MATRIX FOR THAT CHODICE OF "TRANSMITTED® AND ‘RECIEVED . 7
S0O7
' S03
Ok 10 509 var field_base : integer;
."{ L Si0 modulus : integer;
3\ 10 S11 transmitted : integer;
i 1o 51z received : integer;
A T R LN R L BT
;ﬂf i S14 index : integer;
150 a1l
LK) =z
s 210
> % 517
o 10 513 hegin
~ 519
'{}: il S20 writeln(chr(27), 'M'); {enable elite type on printer;
i 52
i%: 11 S22 writeln( ' please enter, on one line and separated by blanks,
P
T CEIE
o
R
g
J"n
e
Tt
"-' \;.'.*-.‘_-..,:._.'-f\' T ‘ - ATRTST Y ';._.:..,,1.' )vﬁf'-'_:.-_-ﬁ_.\,'-‘.:-_.:-..'._.:._. e AN SO et




S [0 Line#

Yo i1 S22
-
*i. . oA
‘ "‘-_-, l 1 i et
L 11 223
Tl 11 sS4
Y 11 32
; 11 325
:: ot 11 529
RO i1 225
~):a 11 =27
L - -
Fa 528
N i1 s2
11 FI0
e 1l 532
S 1 ey
-« 4 11 PR
il 524
{ S3S
3 i1 o6
«
A =37
.\.I‘. -
11 528
0 Lt 538
v N -
bﬁ 537
-~ -
p i1 5S40
{ il 54
P, 341
te, Ry =a4m
y -4':‘:.' 0 S42
A
o ]
O, Iemtab 542
R
4
2
A YR
5%
ANy
LR
2
U]
L ™Y
.
..« ,‘l
\i’--o
et
LS
T
%S
s..l..

‘-

iisﬁ‘_”

CANLS NN

i
.
4!

.F‘

o

Ol

.

;!

’

&
A

b ~ .’-"..‘.-c‘ \.".-...('..*(\.'._.'%.- .'_.-'\-'.\a‘,‘.'_..".-‘_-."..-.-‘;f_;.-‘-.-\-'. ~:;‘ oo e e,

Source Line IBM Fersonal Computer Fascal €
H

writeln('the field-base, modulus, number of cn
nt, ")

writeln (' and number of channels to be received

b3

ompllcor

anneles

. The

=)

modulos

writeln( 'should be an occtal number; all other numbers shculd

b
writeln( ' be decimal. 3
writeln:

read (field_base);

~EAD DOCTAL (modulus);

modulus 1= modulus — TWO_TO_THE(field_base):
read (transmitted);

readln (received);

writeln;

writeln (' thank vou...please wait' diwriteln;

EMCODE (transmitted, received, modulus, field_

writelnichr (27) ,chr (64)); {disahle spec
ernd.

Offset Length Variable

0 76 Return offset, Frame length
74 2 INDEX :
4 2 MODUL.US :
10 &4 CHANNELS :
8 2 RECEIVED :
2 2 FIELD_EASE :
= 2 TRANSMITTED :

Errors Warns In Fass One

- . e
e
PO S S

MY Y

basze, channsl

1ai

Integer
Integer
Array

Inteqger
Integer
Integer

r=

modes

Stata
Stati

s

-~

NN
oot

v W
ot

-+

Dyl
jars
...

tati

]

NN

00N




e s 3 AN e it USRI A AL AL AL SR AN ARSI A A T T TN T ET IO RT TR R TSR T MY '..'1

) i1

Appendix I

Program for decoding procedure

- (including Stages 1, 2, 3 and 4)

SN

. L)
! A"A

]
'Y

00

20"
¢ AL

) -~
Y Sy .'.':"u

‘l.l.'.'
.
Tt tatat et

P S

Y

.
-
2,

O
Sletel

N

VAT RN

)
P

o5

R R M S
I i I it A
MR SRR Y YR PRI P WY




= Lins#H# [ourca tins IEM Far
! program dant (input,ocutput
Ll = carnst zero = Qg
i 4 one = 13
PN 5 maxindex = 123
10D = WCRDLENGTH = 1&:
=
1 = tvoe mat row = arvra
- ? Mmatri = Erra
o0
L i1 v A 1nge:;
\ L z van
T i 1% dn+
ARy 1 ; ArE ori
i 14 1: jn._prlme
-y Lo 1% recelved
':ﬁb L 1o transnitted
\ " i 17 field bacse
9 1 L2 modulus
R 10 Ed oW
i 1o 20 zol
o« - . -
oo I 21 rows
<. L o2 datarow
P Lo gt datarows
H L z4 axtra_desida
> i 25 columns
BON L 25 dimension
NN 1o 7 temp
.dg 1is 23 channel
N 1o P desired_channels
' 1o 0 reducing_=1t
) = reduced_elt
) .\) - . -
,Q? L z2 dead _channels
\{ 10 T dead_channel
Wbl 1 T4 decoder
kfﬁ 19 5 desired_channel
g in A data
‘. ' T dreiderats
2o, - - .
o 1in ik active_channel
T N T codeword
:}& LD 403 clearword
L 1 4 1
w0 1 1 continue
- .- P N
o Lol 47z active
e 1o 4z EQT-
. 10 47 3
N~
T 44
., 45
I

s

i

Q
o,

3

Sl W - LR B R C e e T e maw
Y0 s Y ST S0 1 Dd S N N S SO I T vy

~
o

—
.

B8 a8 %8 sy we 5 ER ap RS sa ws as B® s Sa xy S5 wm SN g SR sm  om fon
.

ET

5% 53 58 gg 5 am

LmEsi L nde

1
3]

.maxinde;

integer:
natrixg
matring
matring
integer:
integer;
integer;
integer:
integer;
integar:
integer
integer
integer
integer:
integer:
integer;
integer;
integer;:
integer:
integer;
integer;
inteqger;
mat _row;
matrixg
mat_row:
matrixg
matrivg
mat _rows
mat _rows
integer;
char;
bool ean;
boolean:

2z cag caw

sarmal Computer

2SCAL S
ot integer;
of mat_row:

{End QOFf Transmissicn




Pl
el
T T T

P

w e
4 @ a8
LRI N T i )
e e 8" 2 4" a

[N

e '{I e '.. v, .;-.‘)

i A i )

F

.
.

M

¥ > X
I ”
- .‘.‘l

N

NG
OISR L

L}
v)‘-

‘ "1 "‘< ‘A' l

> ol s

[ e

o

(¥

-+
&

Lo WL P YL A

4

LY

L)

%

. iRl
4o
+5
37
<43

et A0 i

[Eal

RV S S o I SR RT RN A

(S Vo T & 6 AR W

i
o Ol

~
[EPRPO

ia
SRS
]

f

b

—y—y

78
79

80
81

SR
[y

ooy

~EnD OCTAL

Source Line
{ the TwD 70
d

a2xponentlat
raised to t

ARAC i Al AU A A et A D S Bt S SN i B g g

IBM F=rzonal Cco
_THE function

makes

1on coerator 1n sta
he power af 1ts cal

function TWO_TO_THE (argument :
warm  accumulator @ integery

index : integer;
32310

accumul ator
rar 1ndex s
accumnulato

TWoO_ TS THE

=Tata H

Jffset Length
- 2 14
— é il
- Q 2
- 10 2
- 3 2

=

the READ_OC

the program to input his values in octal ra
it replaces the Fascal

decimal s
procadure RES
const BLANE
A inchar

begin
read (incha

total [

{inch
tinc

while
read

= 13

= 1 to argument do

ror= oacoulnnii ator o«

1S ACCIAMAL AT
Variab.= -
Feturn oftset, F
{(function return)

ARGUMENT
IMDEX
ACCUMULLATOR

TAL routine;

D_DCTAL (var total

)

-

ar = BLANE) do
har);

JFage -
- U5-27-84

17:475: 58
Compiler Y1.:00
up for the

rdard Fascal. It returns two
ler-supplied argument.

TWO_TO_THE

rame lengtn

: Irteger
! Integer

1 Intzaer

:Imteger

this routine allows the aser O+

thar than 1n

standard “‘rezd" routine. 3

: integer);

ot a generalize

YalueF

M0 et A ARt RS A A B A BB ACEE AL S A S e AR



-

¥
X
>
J','b-

“
oo

-
-

o

4

.
.

B |

I B R R

a e .Q,i.lt My "‘..';'
JIEIS I 1l
., .'1Q.‘ﬂ‘i‘-..

- -

IS Lins#

21 82
N B'.‘;
22 84
- Faa X~
—— D wd
8&

Lia 37
0t b a7

Tl

-:. "'\
20 T4
pay 79

PH
- 27
i Ed=)
N 99

100

101
0 102
1 103
Zl 104

1035
21 104
o 107
S 108
S 109
LT 110
21 111

117
. 1173
Zi L3
<1 118
Z1 115
Ny 117

118
10 119

GATTE UCTAL

Fage Z

- 05-23-34

17:44:02

Source Line IEM Fersonal Computer Fascal Coapiler Y1.00

while not (inchar = BLANE) do begin
total := total +« 3 + (ord(inchar) — ord( O’
rzad (inchar)

]
——
..

and
enas;
Cf+=et Length ‘Variable -~ READ_OCTAL
- 2 3 Feturn aoffset, Frame length
- 0 = TOTAL tInteqger YarF
- A i INCHAFR :Char

ithe WRITE_OCTAL routine: it replaces the Fascal standeard

“writae” routine and allows the 2rogram Lo report its
output values in ootal rather than in decimal. x

procedure WRITE_OCTAL (number ! integer;
field_base : integer };

var outbouf @ oarray [1...WORDLENGTHI of charg
temp 1 integer;
index ¢ integer;:
begin
for index 1= 1 to WORDLENGTH do cutbuffindexl 1= "07;
index = 1;

while {(number > ) do begin
temp := number mod 8
gutbuflindex] := chr (ord('0’) + temp);:
index 2= index + 1;
number := number div 8

2nd;
temp := ((field_base + 2) div 3);
if ostzep U 1) theErn b=ap oi= 1
if (temp < (inde:x - 1)) then temp :1= i1ndex - 1;
for index := temp downto 1 do write(outbuflindexl’;
write(’ ) .
ernd;

Offset Length Variable - WRITE_QCTAL

~ -

e et Y et A e A
-~ .x._\..w,\_.‘k....\__..\ NN




‘y -y

l’ f “ { .‘ " ‘l = ‘
- K7
'.f"f"f_‘.‘_ ol

Oyyy
SyNANGs

20

]

o0

e
=)

g
20

pely

Bl TIFLY

Jo D Line#

P I PR P e "e " s * " a."a e T e T T T e T T T T T e e T et e T T e e,
A e T T T e T T e e T T e e e L T s e e

Fage 4
05-27-84
17:44: 05

Source Line IBM Fersonzal Computer Fascal Compiler Y1,00

- 4 20 Return offset, Frame length

- 0 = NUMEBER : Integer valueF
- 24 2 TEMF : Integer

- 26 2 INDEX : Integer

- 2 2 FIELD_ERASE :Integer ValueF
- 22 16 QUTEUF tArray

{ The ADD function returns the logical #or of its two caller-
supplied arguments. This is addition over GF(n) +or any n. >

function ADD (terml : i1nteger;
tarmd * integer ): integeir:

begin
ADD := ( (terml or termZ) and (not(terml and term2)) )
2nd;

Uffset Length Variable -~ ADD

- 4 10 Return offset, Frame length

- 8 2 (function return) : Integer

- Q 2 TERM1 :Integer VYalusF
- 2 = TERMZ rInteger YalusF

{ The MULTIFLY function performs multiplication over GFin)
maodulo the caller-supplied modulus and returns the result

of the multiplication. 3
function MULTIFLY (factoril : integer;
factor : integer;:
modulus : integer;
field_base : inteqger ): integer:

var index
answer

integer;
integor;

hegin
answer := 03

for index :1= Q to (field_base -~ 1) do
begin




| 9 Oy N
.

~
.
Pl

AL

DY
“.

-

," .!'_.‘f.l‘.

-'A.\§.'.

“

Ll

o 4"- -~

] , ‘l‘.
DL

(]

W
) .

I'K! t._] t.:l

Limek

1352

B LN

oo G g 13 0 0 Ch

[ TP e

G B e

ot
[Ba

1464
165
166
167
168
167
170
171
172
173
174
173
1746
177
178
180
131
182
1387=
184
185
136

16
Fage 5
05-23-24
17:44:08
Source Line IEM Fersonal Computer Fascal Compiler V1,00

-

answer = answer ¥ I3
if «{ (factorl mod TWO_TO_THE (field_base - index))

div TWO_TO_THE (field_base — (index+1)) ) & Q)
then answer := ADD (answer, factorl);

if { (answer div TWO_TO_THE (field base)) > O)

then answer :1= ADD (answer,
TWO_TO_THE (field base) + @mcdulus)
end;
MULTIFLY := answer
2nd s
Mfrset Lenath Vari1able — MULTIFLY
- = 2D Return offset, Frame l2nghtn
b i trunction return) : Integer
- i 2 FACTOR1L tInteqsr - aloeF
- 14 2 INDEX s Integer
- 15 2 AMNSUWER : Integer
- 2 = FACTORZ rInteger ValueF
- 4 2 MODULUS :Integar “YalueF
- 6 = FIELD_BASE tInteqer YalusF

f The INVERSE function. It accepts a field element and
returns the element’'s multiplicative inverse. This
implementation is very slow % primitive-— it should be
replaced by Davida’s inverse routine or some other fast
implementation at the first oppoartunity. H

function INVERSE ( element : integer;:
field_base : integer;:

modulus integer ): integer;
var index : integer;
aneuar + irntager:

squares : integer;:

begin

for index := 1 to (field_base - 1) do
begin




.S
:x
|
L

O S

‘l‘ )-“-.

L

2

i 4 .« -
Ty,

-

[ ¥ a L 8
P IS 25 00 0 g ¥ 4

e
A
LAY

?
as

5

3

4672

;h!;.’n.

st

Y

bR Ll Ll

P

.

iy

—
-l

~q‘<.

B

ba T r!

rd

FIDE

Line#

187
138
189
170
191
192
157

[

e
)

174
195
125
1797
173
i19%
ZO0
201
202
203
2043
209
206
207
208
209
210
Z11

=l R

213

Source Line

squares := MULTIFLY (squares,squares
answer :1= MULTIFLY (answer ,squares,modulus
end;
INVERSE := answer

end3;

Offset Length
-_— Q -';)
- 10
- Q
- 1z
- 14

i
a

- 4
- 16

I-‘J

[0 O T O I 0 2 20 O BN

IBEM Fersonal

Yariable — INVERSE

Retwrn offset, Frame length
(function return? :
ELEMENT

INDEX

ANSWER

FIELD_BRS5:Z

MODULUS

SOUARES

Caomputer Fascal Compiler
ymodulus,fi1e2ld_base) s

Fage b6
05-237-84
17:44:11
Y1.00

.field_base)

Integer
: Integer
:Integer
tInteqger

Yaluek

{ The DIVIDE function performs Galois-field division.

i1t accepts dividend,
(in that order),

diviser, modulus,

multiplies the result by the dividend.

function DIVIDE

var divisor_inverse :

begin

divisor_inverse :1=
MULTIFLY

DIVIDE :=

erds

Offset Length

{ dividend : inteqger;
divisor ! integer;
modulus : integer;
field_base : integer

integer;:

INVERSE (divisor,
(dividend,

modulus, field_base

Variable - DIVIDE

- 8 16 Return offset, Frame length
- 12 2 {(function return) :

- 0 2 DIVIDEND

- 2 2 DIVISOR

- 4 2 MODULUS

- 7 2 FIELD_RASE

NN e e T T Ty e Ty LT Rt et A e "

field_base,
divisor_inverse,

and field-base
takes the inverse of the divicor,

s Integer YalueF
tInt=ger Valuef
:Inteqer

and

[

integer;:

modulus? s

)

Integer
: Integer
t Integer
t Integer
tInteger

YalueF
ValueF
Valuef
Val uefl



2 18 K
94
oY
% Fage 7
. - 0S-23-34 -
' 17:44:17 .
{ G120 Line# Source Line IBM Fersonal Computer Fascal Compiler Y1.00 )
. - 14 e DIVISOR _INVERSE : Integer :
N <1
.
iy -
. I The HERMITE_MORMALIZE routine takes a matrix which 1i1s -
at least two columns wide and which is also at least )
. as tall as it is wide and reduces it to Hermite normal
N torm (1.2, to & form with an 1dentity matrix at the top.) >
N A
r- [ 221 procedure HERMITE _NORMALIZE f{(var m : matriy; "
- 20 222 rows : integer: K
2 203 cols : integer;
:- 24 224 Mmodl ¢ integer;:
. Jels 225 f_base : integer ) b
o Z26 o
. - 227 VAF O P integer: >
f Il 22 =ol : integer; -
N 229 reducing_col : integer;:
v, 20 230 reducing_elt : 1nteger; -
» Z0 23 reduced_elt : integer; X
- 20 232 index : integer; -
: i 233 temp : int&der; X
. 2743 y
, 2o 235 begin
: 236 ;
X Z1 237 if {(cols <« 2) then .
. g 23 writeln ('stripped matrix has <2 cols: error’) -
v 1 2379 else begin -
4 240 -
22 241 for reducing_col := 1 to cols do begin
£ 2z 242 index := reducing_col; .
) =23 2472 while ( (m [reducing_colllindex] = 0) and :
o 23 244 (index < reducing_col) ) de .
. g 245 index := index + 1; K
- 246 ,
23 247 i¥ (not{index = reducing_col)) then {switch c
2z 247 nle) K
. 23 248 tor row := 1 to rows do beqgin .
24 249 temp = m [rowllreduzing_coll; R
2 24 250 m [rowllreducing_coll := m [rowllinde:3; -
! T4 251 m [rowllindex] := temp b
- 2X 252 end;
253 :
j =32 254 reducing_elt := m Lreducing_col JIreducing_col]; 2
o 253 -
3 296 {set leading elts. of columns to 1 by dividing cols by constant <
'd X
- HERMITE _NORMALIZE
4
\
)
0 X

e N N AT NN e e A A

BTN




i‘.." ST eI T T : ) ) )
2 19
\ L]
1
‘\‘
-l"s
XN
&{ . Fage 8
K . 05-23-84
2 17:44:17
(g J3 I2 Line# Source Line IEM Fersonal Computer Fascal Compiler Y1.00
X 256 .3 '
- - 257
::ﬁ et zs58 temp := reducing_elt;
}2 23 259 if (not (temp = 1) ) then begin
.7 24 260 mlreducing_colllreducing_coll := 1;
24 261 for row = (reducing_col + 1) to rows do
r. - 24 262 m [rowllreducing_coll := DIVIDE (mirowllreducing_col]l
2 e 262 , temp, _
i o4 Z6T modl, f_base 3
';2;; 23 2643 end;
W 265
\ 266 {column-reduce by clearing row ‘reducing-col’ using entry
LQ. 267 mlreducing_col Jireducing_coll, >
e 268
lf o 269 for col := 1 to cols do
O 270
: 2z 271 if (not(col = reducing_col)}) then begin
ke 24 272 reduced_elt := m [reducing_colllcoll:
= 23 273 if (not(reduced_elt = 0)) then
Lo 24 274 for row := reducing_col to rows do
ra et} 275 m [rowllcoll :=
05 24 276 ADD (m LCrowllcoll,
> 24 277 MULTIFLY (m [rowllreducing coll,
A 24 278 reduced_elt, madl, ¥ _base )
Yy z4 279 end
A ;
Q"..q 280
3 23 281 end
Yy ~
L 22 282 end
N 287
10 284 ends
‘_"-“
s S.mtab 284 Offset Length Variable — HERMITE_NORMALIZE
N - 10 42 Return offset, Frame length
s - O 2 M tArray VarfF
5 - 2 2 ROWS :Integer YaluasF
. - 4 2 coLs :Integer ValueF
o - 14 2 RO tIntener
Do - 16 2 CcouL : Integer
,z - & 2 MODL 1 Integer alozl
?:ﬁ - 8 2 F_BASE t Integer ValueF
%) - 24 2 INDEX : Integer
s - 26 2  TEMP :Integer
3, - 18 2 REDUCING_COL :Integer
- 22 2  REDUCED_ELT : Integer
_\ - 20 2 REDUCING_ELT : Integer
'-."
'y SIRMITE MNORMALIZE
b
BN
A
'y
§§4
2

RS CN T AN G CS CRE S (A S ARE A Ny W, *ﬂbk-l}}}lﬂi}h}jﬂb}?}?}}}ﬂ}:-}}};-Z':-}}l‘:('l-?:-3'}:'}};-.‘J~}l-.‘§-l‘i-?.-.‘ii




KO RASEHA A AN RS S A R NTRUNTN S N G O AR AT A At e A e S
\Q
v I10
|
¥
>
N Fage 4
O - 05-27-84
P 17:44:2
( BRI Source Line IBM Fersonal Computer Fascal Compiler V1.00
b,
A
'-l
o~ { The CONSTRUCT_VAN routine. This procedure constructs a
square vandermonde matrix with the dimension supplied by the
\° calling routine. 3
oy
w1
éj procedure CONSTRUCT_VAN (var van : matrix:
& . n : integer;
5* i field _bacse : integer;:
N 20 modulus t integer )
o e
<. 295 var oW : integer;
::\ 29v column : integer;
-4 : T00 xwponent : integer;
A T 01 index : integer:
it temp : integer;
h|
-~ 20 04 begin
K\
= sl . if (n < 3) then writeln ('van dimension < Z: error’)
O 2t 307 else
i 21 k begin
!
ﬁ Z10 ibuild first row of van. >
L2 311
) o2 12 van [13J013 := 13
' 2z I13 for column := 2 to n do
2 14 van [13lcolumnl] = O
" 31E
- 316 {build second row of van. 7
{} 317
> by 7183 for column := 1 to n do
L 22 19 van [21CLcolumnl := 1
- 320
- I21 ‘huild third row of van., 3
G 322
) iz TZ3 van (31013 1= 13
o 2z 2 van [I1L2] = 23
o 22 29 for column := T to n do
T 22 2 van £31fcolumnl :=
‘Q 22 2 MULTIFLY (van [33[column - 11, 2,
3 22 32 modulus, field_base ]
W =
A?, 3I0 {build remaining rows of van.J’
1; COMSTRUCT _VAM

5

-

N I g R T e R N R e AU U PR L SR
MG C O R C LN PR G IO IO A A A AT TR P S A ST ) X




LCANING

22

>

el
21
21

21

344
345
346
747
748
749
350
751
353
355
156
357
358
359
360
61

TEANSFOSE

Fage 10
05-23-84

17:44:24

saurce Lin= IEBM "ersonal Computer Fascal Compiier V1,00
it n » I ehen
tor row = 4 o

Lo n
van [rowl(1]1 := 1;
for column := 2 to n do
van [rowllcolumnl ==
MULTIFLY {(van [row - (2J(columnl, van L[IZ1(colunn

4
modulus, ftield_base
end

2nd .

=rnd; K
]
Jffset Length Variables ~ CONSTRUCT VAN ]
- 3 32 Return offset, Frame length i
- » 2 VAN tArray VarfF )
- 2 2 N tInteger Valu=zsF 4
- 12 2 ROW :Integer
- 4 2 FIELD_BASE s Integer YalueF
- & 2 MODULUS :Integer ValueF 4
- 14 2 CoLUMN : Integer 1
- i8 2 INDEX :Integer 1
- 20 2 TEMF tInteger ]
- 16 2 EXFONENT :Integer
{ the TRANSFOSE routine accepts a matrix and its dimensions
and produces the transpose of the matrix. ¥

procedure TRANSFOSE ( m
var m_prime

™ o

m;cols : integer )

matrig
matrixg

intenors

: integer:
cal : integer:

begin
faor row = 1 to m_rows do
for col := 1 to m_cols do
m_primelcolllrowl] := mlrowllcoll;

Tt e e e O AT T e e e e e T T T e s St A
y AP L P R N P ATy A I A U AT A 0 S S N TS Ay



DDA A A

AR B S 2 Bt Tt D A i of -','1

2
- _q::.n
dj Fzge 11
< - 05-23-84
NS 17:44: 283
(- Ji3 [ Line# Sowce Line IBM Fersonal Computer Fascal Compiler V1,00
s 10 J62 ends
& 1.‘:
;Hﬁ Avmtab 62 Offset Length Variable - TRANSFQSE
Y - 2054 2066 Return offset, Frame length
\ - 2046 2048 M tArray  ValueF
- 2048 2 M_FRIME TArray Varf
N - 2050 2 M_ROWS : Integer YalueF
‘,H- - 2052 2 M_COLS :Integer YalueF
A - 2058 z ROW s Integer
Sy - 20860 2 coL tInteger
P
, TOT
% T64
o 365
o~ hb { THE MAIN ROUTINE. THIS CODE GOES THROUGH THE ENTIRE
o8 &7 DECODING PROCESS, WHICH IS BROKEN INTO COLD, COCL &b
Y 368 HOT FRECOMFUTE STAGES AND ONLINE DECODE STAGE. B
sk 69
:Q 10 EZO begin
‘.:" e/
j& 72 { COLD FRECOMPUTE STAGE BEGINS HERE. ¥
.Jﬁ 373
0 374 { First, we read in the modulus and field-base for tine
i F75 Galois field to be used in our calculations. 7
) 376
'}j 11 77 writeln('Flease enter, an one line and separated by a blank,’
™y 11 377 )
?$ 11 78 writeln( 'the field-base and modulus to be used. The'):
o 11 377 writeln({ field-base should be a decimal number and the’ '’
1i 80 writeln (' modulus should be an octal number. ')
o 381
Py i1 82 read(field_base)
pr t1 383 READ_OCTAL (modulus) ;
o 84
s 11 85 modulus := modulus - TWO_TO_THE (field_base)
i 86
) 87
25 =88 { Next, we construct a Vandermonde matrix called VAN. 3
S 87 .
o,
- i1 70 dimension := TWO_TO_THE(field_base);
) 71
i 1l TR CONSTRUCT_VAN (van, dimension, field_base, modulus):
oy 293 '
A 394
S 595 { COOL FPRECOMFUTE STAGE EBEGINS HERE. 3
o 96
N
>
O AHF
2
W
'%
.3

4 3,

Y

LIPS S P R P L R N ) IR o T S T .
) O P, N G 4 A N AN A A A T NGO R R



.,
& Y
», f )
AR
,

R DN
~:ll ~}

]

SV,
l."\,"é ) ASN

2
«

3 54
RPAA

,
'
2 X

P
as,
".“‘-‘ .-" g

XA AAL
;fffkf

»
)

+

v gt A RARTUICAS I
2 0

ﬁéﬁkﬁﬁ

41 - ., t_’.
\‘ii’&"\ 5y

L)
N

)

“ ‘4 3
- (YA

Q)

»
D,

rr

e |

0 IC

14
11
il

1i
il
11

11
11
11

Line#

397
378
399
3400
401
4072
407
404
405
5 Ipr
307
408
J0F
410
411
411
412
4173
414
415
415
417
418
419
420
421
4z2
427
424
425
426
427
428
429
470
4731
474
435
476
437
478
439
440
441

BTN AT A A
L3 - "y % R

DAOMMACMASIS S A REASRERSMERD

I13

rage 12

- 05-23-84

17:44: 75

Sgurce Line IBM Fersonal Computer Fascal Compiler Y1.00
{ Next, we read in the number of channels to be sent

by the transmitting node. b

writeln('Flease enter the number o channels to be sent '}
writeln('by the transmitting node. This should be a’);
writeln( 'decimal number. )

readlrn(transmitted);

Next, we read the number of channels to be received by
the receiving node. >

[

writeln( ' please enter the number of channels active at’);
writeln( the receivers node; this should be a decimal number.
Yy

readln (received) ;
Now we strip away the eixtraneous rows and columns of the

vandermonde matrix. We leave only the topmaost n rows and
the leftmost k columns of VAN. ¥

(o)

t= transmitted;
receiveds

rows
columns 1=

{ Next, we hermite-normalize van to give us a tall, thin matrix
with an identity at the top. 3
HERMITE_NORMALIZE (van, rows, columns, modulus, field_base):

{ Finally, we construct ocur "special" left-kernel for the
stripped, col-reduced VAN. This matrix is shaort and
fat, with an identity at the left, and it is our DNF

[}

(Decode-Normal-Form) matrix.

to (transmitted - received) do

for row s= 1

for col

dnf Lr

for row
for col
if «

... -

w

[»}

(col

R YA Sl

1 to received do

wllcoll := van [row + receivedllcoll;

1= 1 to (transmitted

(received + 1)
- received) =

/S S AN

- received) do
to transmitted do
row) then




A

FLAPC

.‘: )
\‘_'
N
.\‘.:
. g2 IC Line=#
. ~ il 4 L;
N 11 a4
.5& 11 234
o) 445
o 11 446
11 4464
N 347
e Le 348
Lo 1t 443
_yﬁ 11 34539
) 450
. 11 3451
NR Ll 451
- 452
A 457
A5t . 354
N i1 455
i1 455
s 11 456
LR i 457
N it 458
=4 A
&, i1 440
. 12 451
d pie 462
Y 12 44673
N 11 464
5 11 465
¥ 366
467
Al 468
L. 11 369
e 11 469
o~ 11 470
> 11 471
O 11 471
" arn
o 11 473
2% Ll 1773
o 1t 474
0 475
- 476
AL 477
S0 478
A 11 479
%4 it 430
v
I DiF
I
25
1o
£
'ﬂat

N o

- .y T
A ARSI T 0N

Fage 172
- 05-27-84
17:44: 30
Source Line IBM Fersonal Camputer Fascal Caompiler V1,00
dnft [rowllcoll == 1
2lse

dnf L[rowllcoll 1= O

TRANSFOSE (dnt, dnf_prime, (transmitted - received), tramsmit
ted)

HERMITE NORMALIZE (dnf_prime, transmitted, (tranesmitted -- rec
=ived),

modulus, field_base)l;

TRAMSFOSE (dnf_prime, dnf, transmitted, (transmittsd - recerv
ed) )

wititelns

wiriteln ('DNF matrix for “,received:Z,’ cut of ',transmitted:
2);

write (‘channels over GF 2#% (' ,field_base:l,’) mod ")

temp := modulus + TWO_TO_THE (field_base);:

WRITE_OCTAL (temp, field_base);

writeln('is: “Jijwriteln:

for row := 1 to (transmitted - received) do beqgin

writelng
for col := 1 to transmitted do
WRITE_OCTAL (dnf Crowllcoll, field base):

end;

writelniwriteln;
{ HOT FRECOMFUTE STAGE BEGINS HERE. >

writeln('please enter, on one line and separated by blanks, "}

channels active )

writeln( the numbers of the ’,received:2,’ 3
These numbers should be deci

writeln(’'at the receiving node.
mal. )
do read

for index := 1 to (received - 1)

e VY w
-

readln

(active_channel [ind

i

(active_channel L[receivedl);

Here we fill up the data matri:.

~
“

row = 134

for index := 1 to received do

B AT AN S

e N ANt .
[ Y] 1) ) N A AT v Yol rf

- -
- O ay

e e A e e
[T A A AN S .-_‘.'_'j




L)

("

g -

-

- e
[l OO N (8 BN 1

U

— .

WL TR CU TN 2% N U SR OO B =

pom e i ek e

—

-t

[ LR P

el P RO S

Pb et P e bh pen pem

Llins#

481
481
48Z
433
484
485
4834
437
318z
439
370
a4
491
422
457
FE4
455
424
4327
493
432
e
SO0
201
502
503
o204
303
206
S07
208
D07
510
511
12
913
=143
513
916
517
518
319
520
521
=y

R
[

-t

Fage 14

- GES-2Z-84

17:44: 46

Souwrce Line IEM Fersonal Computer Fascal Corgiler Y1.00
i¥ (active_channel (indexl <= {(transmitted - received)) the

n o=291n
for col 1= 1 to transmitted do
data [rowllcoll :=
dnf [ active_channel [(indexl 1lcoll:
row := row + 1
end;
datarows :1= row - 13

s

Hdere we fill up the desiderata matrix anmd those rows of the
decoder matris corresponding to channels which we are rescevin
qQ.7

desired_channe
dead channels
extra desid 1=
for channel 3
active 1= FAL
for index := 1 to received do
1¥ (active_channel [indexl = channel) then active := TRLE

s b
.

j‘, =8

[}

-

-

-

if ( (not active) and {(channel <= received) )} then begin
desired_channels :1= desired_channels + 1;
desired_channel L[desired_channelsl := channel;j;
if (channel » (transmitted - received)) then begin
dead_channels := dead_channels + 1;
dead_channel (dead_channels] := channel;
for col := 1 to transmitted do
desiderata [channelllcoll] := data [extra_desidllcoll;
extra_desid :1= extra_desid + 1
end
else
for col := 1 to transmitted do
desiderata [channelllcoll := dnf [channelllcoll
and
glaze if (re+t active) then heoin
dead _channels := dead_channels + 1;
dzad _chanmel [dead_channelsl = Zhannel
end
else i+ (channel <= received) then
for cal := 1 to transmitted do
if (col =2 channel) then decoder [channelllcoll := 1
else decoder [channelllcoll := ©




AR S S it S Sl A e A A Ao e i v

Fage 1S
05-27-84

17:44: 51

B 53 1T Line# Source Line IBM Ferscnal Computer Fascal Compiler V1,00
:; s2 X _ . _ »
s 528 { Here we clear the columns in the desiderata matris correcpond
-u‘;',. 529 ing
. 2 i
ﬁ% 32 to channels which we are not receiving.
" ) b
4N ad e F
' 27
o 11 92 row = 13
e 11 S2< for index := 1 to dead_channels do begin
L, 12 330 if (dead_channel [index] » (transmitted - received;) than b
S 12 S0 29in
y 1z 531 for channel := 1 to desired_channels do
13 532 if (not (desired_channel(channell] = dead_chanrellinde:z 1)) th
ey 1= 332 en begin
0 L4 533 reducing_elt := data [rowlldead_channellindexl3;
o 14 534 reduced_elt := desiderata [ desired _channellchannell 1
N 14 S35 [dead_channellinde: 17;
S 13 536 for col := 1 to transmitted do
! 14 337 desiderata [ desired_channellchannell ] (coll :=
2 14 538 ADD ( MULTIFLY (desiderata [desired channellcharnn=113C
e 14 538  coll,
Rﬁ 14 59 reducing_elt,modulus, field base),
e 14 540 MULTIFLY (datalrowllcoll,raduced_s1t,
R 14 541 modulus, field_base))
i 13 342 end;
EN 17 5473 for datarow := (Frow + 1) to datarows do begin
S 14 S44 reducing_elt := datalrowlldead_charnelfinde:1];
s —-
a2 14 345 reduced_g1lt := data [datarowlldead_channellindex1];
o 14 S4b4 for col := 1 to transmitted do
oy 14 =47 data [datarowllcoll :=
14 3438 ADD ( MULTIFLY (dataldatarowllcoll,reducing_eslt,
! 14 549 modulus, field_base),
- 14 IS0 MULTIFLY (datalrowllcol 1,reduced_elt,
Lo 14 =51 modulus, field_bacze))
o i1z 5352 end;
" 13 553 row := row + 1
13 354 end
[ =E5 @rcs
356
S57
558 { Here we obtain ones in the "lead" columns of the desiderata
559 rows by dividing through by the values previously in those
1 S60 columns. 3
N Sa1
~
{ ? 11 56z for channel := 1 to desired_channels do begin
j:: 12 563 reducing_elt := desiderata [desired_channellchannelll
,‘ﬁ 12 S64 fdesired_channel {channel 11;
o
T OHF
v
‘\"'l
“
(N
P
o
Pty

$§ ‘\_ i - i LS% \ \' YO -\."."s. “ s"-.' S TSI A A

TR




ACAESA At Ta U AR e 44 e . . AL A A AR S IR SIS N Nt AL A (LS e gt
x 117
Lo Fage 16
- 05-2%-84
17:44:359
a1 23 IT Line# Source Line2 I5M Fersonal Computer Fazocal Compiler Y1.00
. i2 569 for col 1= 1 to tranemitted do !
3;~ 1z D desiderata [desired_channe2llchannel 11lcoll := 1
{): iz 367 DIVIDE (desiderata (desired_channellchannellllcoll, ‘
Bﬁ' 12 368 reducing_elt, modulus, field_base):
S 11 569 end;
370
o~ =571 1
bR 572 { Mow f1il11 up the rows of the decoder matrix corresponding
e 37T o channels which were desired but not active. ¥
ey =74
- il S7S for channel := 1 to desired_channelese do
L i =74 for col := 1 to transmitted do
e B 77 decoder [desired_channellchannellllcoll =
}i il n78 desiderata {(desired_channellchannellllcol l;
T 57w
DN SR30
L 561 { Now we print out the decoder mnatrix.
=82
N 11 =87 writeln (' 'Decoder matrix for the active channels listed above
:'Q; 'y S87 is:);
e 584
o i 585 writeln:
e 1 5856 for row := 1 to received do begin
{ 12 587 for cal := 1 to transmitted do
Y 12 538 WRITE_OCTAL ( decoder [rowllcoll, field_base):
oy 12 =59 writeln
i 11 S50 end;
. 11 591 w-iteln;
- 5972 A
i 597
ol 594 { DECODING EBEGINS HERE. H
o 595 |
2% 11 596 EOT := FALSE; :
'i} 1t 597 while (not EOT) do begin
S 598
;" 1z 597 writeln('please enter, on ane line and separated by blamks, )
. L2 =2 3
.'2 12 600 writeln!'the data received on 2ach of the chnamnels active =t
< 12 A Y
;X 1z 501 writeln( the receivers node. The data should be in the +crm’
X5 = a0l )3
e 1z HO2 writeln( af octal numbers, and should be =ntered 1n orcer of’
12 602 )3 '
e 12 607 writeln(’increasing channel number. ');
i 604
~ 12 605 for index := 1 to transmitted do
..1'\
o HF
<y
0
(Y
g
' o0
-
l"' .
b,
Y
B ¢ e e T A T A




118
rage 17
- N5-2Z-34
17:45: 04
Line# Source Line iBM Fersonal Computer Fasscal Caompiller 1,00
b6 codeword L[index] := O
607
608 for index := 1 to received do
HO9 READ_GCTAL ( codeward [ active_chann=2l {indewxd 1 )3
610
511 wrritelns
61Z wrriteln('the ',received:2,’ transmitted cleartext words were’
H12 ]
65173 writeln( (octal numbers exprassed in channel order): )
a14 writelns
6515
i 12 b1é for index 1= 1 to received do tegin
b Lz 617 clearword := O
o 17 6518 for col = 1 to transmitted do
Ay 3l L1737 clearword := ADD (clearword,
e - &20 MULTIFLY (decoderlindexllcoll,
e L3 52 codewordlczol 1,
3 13 622 modulus, field_bass) .
'j.':’;. L3 LI WRITE OCTAL (clearword, field_base)
N 1z &Z4 e=nds
Lﬁ. L AH25 writelng
) &E6
12 &Z7 writeln{ do you want to decode ancther ‘,received:2,’ weocrds?
iz EZ7 }i
S 623 writeln( ' {type v or n). )3
LHZ?
L2 &30 readlnf{continue);
1z 531 it (continue = 'n’) then EQT := TRUE
' 12 633 end
o &4
x& 00 5T 2nd.
{ﬁ yymt ab AT Offset Length Yariable
X 0 12592 Return offset, Frame length
AOut 2052 2048 DNF tArray Static
. ~198 i al tTotener Skt
?E 12590 1 EOT :Boolean Static
o -4 2043 AT P Arr Ay Thaliz
o 6156 2 ROW :Integer Static
e 51460 2 ROWS tInteger Static
8160 20483 DATA tArray ° Static
B 8172 2 TEMP :Integer Static
s 2 2 INDEX :Integer Static
. 12588 1 ACTIVE tBoolean Static
(ar 6162 2 DATARDOW :Integer Static
s .
CiF
s
¥
A
o
o
>
L3
0 _ . . .




LI
IR G YL P

PrE £

L

A )

g B

NS

2 2 Line#

RN R ot S TR T

Saurc=s Line

6168
4174
6248 204
65154
6164
12320
12586
4100 2¢4
5148

6170

12584

6152

10408 204
&1350 :
blbé
61380
6176
5178
65184
&£1382
8296

1 e
| i, 2]

SRS ]

0~

o~

RIS PRI PRI R QIR R W e bR

oo
RS

Errors Warns

O @]

W T e

<

£y

f. - .. .. ( ® o ..;

N st AP i

-------

Fage 18

05-23-84

17:45: 173

IEM Fersonal Computer Fascal Compiler Y1.00
COLUMNS :Integer Static
CHANMNEL t Integer 5tatic
DECODER tArray Static
MODULUS :Ipteger Static
DATAROWS tInteger Static
CODEWORD tArray Static
CONTINUE :Char Static
ONF_FRIME tArray Static
RECEIVED s Integer Static
DIMEMNSION s Inteqger Static
CLEARWORD tInteger Static
FIELD_EASE t Integer Static
DESIDERATA thArray Static
TRANSMITTED :Integer Static
EXTRA_DESID tInteger Static
FEDUCED _ELT tInteger Stztic
DESIRED_CHANMNELS tInteger Static
REDUCING_ELT :Integer Static
DEAD _CHANNEL tArray Static
DEAD_CHANNELS s Integer Static
DESIRED_CHANNEL tArray Static
ACTIVE _CHANNEL $Aray Static

In Fass One



